Citation: | MA Lan, TIAN Lili, LIU Li. Stochastic Responses and Stability Analysis of Vibro-Impact Systems With Friction Under Wideband Noise Excitation[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1235-1242. doi: 10.21656/1000-0887.440313 |
[1] |
KUNZE M. Non-Smooth Dynamical Systems[M]. New York: Springer, 2000.
|
[2] |
张伟, 胡海岩. 非线性动力学理论与应用的新进展[M]. 北京: 科学出版社, 2009.
ZHANG Wei, HU Haiyan. New Advances in Nonlinear Dynamics Theory and Applications[M]. Beijing: Science Press, 2009. (in Chinese)
|
[3] |
FENG Q, PFEIFFER F. Stochastic model on a rattling system[J]. Journal of Sound and Vibration, 1998, 215 (3): 439-453. doi: 10.1006/jsvi.1998.1646
|
[4] |
FENG Q, HE H. Modeling of the mean Poincaré map on a class of random impact oscillators[J]. European Journal of Mechanics A: Solids, 2003, 22 (2): 267-281. doi: 10.1016/S0997-7538(03)00015-9
|
[5] |
叶正伟, 邓生文, 梁相玲. Gauss白噪声激励下的永磁同步电动机模型的分岔分析[J]. 应用数学和力学, 2023, 44 (7): 884-894.
YE Zhengwei, DENG Shengwen, LIANG Xiangling. Bifurcation analysis of the permanent magnet synchronous motor model under white Gaussian noises[J]. Applied Mathematics and Mechanics, 2023, 44 (7): 884-894. (in Chinese)
|
[6] |
JING H S, YOUNG M. Random response of a single-degree-of-freedom vibro-impact system with clearance[J]. Earthquake Engineering & Structural Dynamics, 1990, 19 (6): 789-798.
|
[7] |
JING H S, SHEU K C. Exact stationary solutions of the random response of a single-degree-of-freedom vibro-impact system[J]. Journal of Sound and Vibration, 1990, 141 (3): 363-373. doi: 10.1016/0022-460X(90)90632-A
|
[8] |
HUANG Z L, LIU Z H, ZHU W Q. Stationary response of multi-degree-of-freedom vibro-impact systems under white noise excitations[J]. Journal of Sound and Vibration, 2004, 275 (1): 223-240.
|
[9] |
RONG H W, WANG X D, XU W, et al. Resonant response of a non-linear vibro-impact system to combined deterministic harmonic and random excitations[J]. International Journal of Non-Linear Mechanics, 2010, 45 (5): 474-481. doi: 10.1016/j.ijnonlinmec.2010.01.005
|
[10] |
ZHU H T. Stochastic response of vibro-impact Duffing oscillators under external and parametric Gaussian white noises[J]. Journal of Sound and Vibration, 2014, 333 (3): 954-961. doi: 10.1016/j.jsv.2013.10.002
|
[11] |
ZHU H T. Stochastic response of a vibro-impact Duffing system under external Poisson impulses[J]. Nonlinear Dynamics, 2015, 82 (1/2): 1001-1013.
|
[12] |
孙娇娇, 徐伟, 林子飞, 等. 高斯色噪声激励下含黏弹力摩擦系统的随机响应分析[J]. 应用数学和力学, 2001, 22 (8): 852-861.
SUN Jiaojiao, XU Wei, LIN Zifei, et al. Random response analysis of friction systems with viscoelastic forces under Gaussian colored noise excitation[J]. Applied Mathematics and Mechanics, 2001, 22 (8): 852-861. (in Chinese)
|
[13] |
TIAN Y P, WANG Y, JIN X L, et al. Optimal load resistance of a randomly excited nonlinear electromagnetic energy harvester with Coulomb friction[J]. Smart Materials and Structures, 2014, 23 (9): 095001.
|
[14] |
VIRGIN L N, BEGLEY C J. Grazing bifurcations and basins of attraction in an impact-friction oscillator[J]. Physica D: Nonlinear Phenomena, 1999, 130 (1/2): 43-57.
|
[15] |
ANDREAUS U, CASINI P. Friction oscillator excited by moving base and colliding with a rigid or deformable obstacle[J]. International Journal of Non-Linear Mechanics, 2002, 37 (1): 117-133
|
[16] |
SU M, XU W, YANG G D. Stochastic response and stability of system with friction and a rigid barrier[J]. Mechanical Systems and Signal Processing, 2019, 132 : 748-761.
|
[17] |
SU M, XU W, YANG G D. Response analysis of Van der Pol vibro-impact system with Coulomb friction under Gaussian white noise[J]. International Journal of Bifurcation and Chaos, 2018, 28 (13): 1830043
|
[18] |
ZHURAVLEV V. A method for analyzing vibration-impact systems by means of special functions[J]. Mechanics of Solids, 1976, 11 : 23-27.
|
[19] |
OSELEDEC V I. A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems[J]. Transactions of the Moscow Mathematical Society, 1968, 19 (2): 197-231.
|