Volume 45 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
ZHAO Xuefen, LU Shaonan, MA Yuanyuan, ZHANG Baowen. The Plane Thermoelastic Problem of a Central Opening Crack in the 1D Hexagonal Quasicrystal Non-Periodic Plane[J]. Applied Mathematics and Mechanics, 2024, 45(3): 303-317. doi: 10.21656/1000-0887.440302
Citation: ZHAO Xuefen, LU Shaonan, MA Yuanyuan, ZHANG Baowen. The Plane Thermoelastic Problem of a Central Opening Crack in the 1D Hexagonal Quasicrystal Non-Periodic Plane[J]. Applied Mathematics and Mechanics, 2024, 45(3): 303-317. doi: 10.21656/1000-0887.440302

The Plane Thermoelastic Problem of a Central Opening Crack in the 1D Hexagonal Quasicrystal Non-Periodic Plane

doi: 10.21656/1000-0887.440302
  • Received Date: 2023-10-10
  • Rev Recd Date: 2023-11-14
  • Publish Date: 2024-03-01
  • Considering the thermal conductivity of the medium inside the crack, the plane thermoelastic problem of the 1D hexagonal quasicrystal with a central open crack in an aperiodic plane, was studied. With the Fourier integral transformation technology, the closed form solutions of thermal stresses, thermal stress intensity factors and strain energy density factors were obtained. Numerical examples were used to analyze the effects of the thermal conductivity, the external load, and the phonon field-phason field coupling coefficient on the thermal stress intensity factor and the strain energy density factor at the crack tip. The results indicate that, the heat flux density gradually increases but the thermal stress intensity factor gradually decreases with the thermal conductivity. The phonon field-phason field coupling coefficient has a significant impact on the crack propagation. When the phonon field load is relatively small or the heat flux density is relatively high, the crack is not easy to propagate. The heat flux density exhibits a concentration effect at the crack tip. The work provides a theoretical basis for the application of thermodynamic properties of quasicrystals, and the optimization of design and preparation of quasicrystal components.
  • loading
  • [1]
    SHECHTMAN D, BLECH I, GRATIAS D, et al. Metallic phase with long-range orientational order and no translational symmetry[J]. Physical Review Letters, 1984, 53(20): 1951-1953. doi: 10.1103/PhysRevLett.53.1951
    [2]
    范天佑. 准晶数学弹性理论及应用[M]. 北京: 北京理工大学出版社, 1999.

    FAN Tianyou. Mathematical Theory of Elasticity of Quasicrystals and Its Applications[M]. Beijing: Beijing Institute of Technology Press, 1999. (in Chinese)
    [3]
    ZHANG Z, URBAN K. Transmission electron microscope observations of dislocations and stacking faults in a decagonal Al-Cu-Co alloy[J]. Philosophical Magazine Letters, 1989, 60(3): 97-102. doi: 10.1080/09500838908206442
    [4]
    LI P D, LI X Y, KANG G Z. Crack tip plasticity of a half-infinite Dugdale crack embedded in an infinite space of one-dimensional hexagonal quasicrystal[J]. Mechanics Research Communications, 2015, 70: 72-78. doi: 10.1016/j.mechrescom.2015.09.007
    [5]
    YU J, GUO J H. Analytical solution for a 1D hexagonal quasicrystal strip with two collinear mode-Ⅲ cracks perpendicular to the strip boundaries[J]. Crystals, 2023, 13(4): 661. doi: 10.3390/cryst13040661
    [6]
    卢绍楠, 赵雪芬, 马园园. 一维六方压电准晶双材料界面共线裂纹问题[J]. 应用数学和力学, 2023, 44(7): 809-824. doi: 10.21656/1000-0887.430111

    LU Shaonan, ZHAO Xuefen, MA Yuanyuan. Problem of interface collinear cracks between one dimensional hexagonal piezoelectric quasicrystal bimaterials[J]. Applied Mathematics and Mechanics, 2023, 44(7): 809-824. (in Chinese) doi: 10.21656/1000-0887.430111
    [7]
    GRUSHKO B, HOLLAND-MORITZ D, HOLLAND-MORITZ D, et al. Transition between periodic and quasiperiodic structures in Al-Ni-Co[J]. Journal Alloys and Compounds, 1998, 280(1): 215-230.
    [8]
    HIRAGA K, OHSUNA T, SUN W, et al. The structural characteristics of Al-Co-Ni decagonal quasicrystals and crystalline approximants[J]. Journal Alloys and Compounds, 2002, 342(1): 110-114.
    [9]
    YAVAS B, LI M X, LEONARD H R, et al. Identifying experimental parameters for in situ TEM heating experiments on metastable microstructures: application to a quasicrystal-reinforced Al alloy[J]. Microscopy and Microanalysis, 2002, 28(S1): 1840-1842.
    [10]
    DANG H Y, QI D P, ZHAO M H, et al. The thermally induced interfacial behavior of a thin two-dimensional decagonal quasicrystal film[J]. International Journal of Fracture, 2023, 224(1/2): 1-14.
    [11]
    NGUYEN H V, DO N B, NGUYEN T H O, et al. Synthesis and magnetic properties of Al-Cu-Fe quasicrystals prepared by mechanical alloying and heat treatment[J]. Journal of Materials Research, 2023, 38(3): 644-653. doi: 10.1557/s43578-022-00846-1
    [12]
    SLADEK J, SLADEK V, REPKA M, et al. Gradient theory of thermoelasticity for interface crack problems with a quasicrystal layer[J]. International Journal of Solids and Structures, 2023, 264: 112097. doi: 10.1016/j.ijsolstr.2022.112097
    [13]
    FAN C Y, YUAN Y P, PAN Y B, et al. Analysis of cracks in one-dimensional hexagonal quasicrystals with the heat effect[J]. International Journal of Solids and Structures, 2017, 120: 146-156. doi: 10.1016/j.ijsolstr.2017.04.036
    [14]
    LI P D, LI X Y, KANG G Z. Axisymmetric thermo-elastic field in an infinite one-dimensional hexagonal quasi-crystal space containing a penny-shaped crack under anti-symmetric uniform heat fluxes[J]. Engineering Fracture Mechanics, 2018, 190: 74-92. doi: 10.1016/j.engfracmech.2017.12.001
    [15]
    ZHANG X, FAN C Y, LU C S, et al. Three-dimensional thermal fracture analysis of a one-dimensional hexagonal quasicrystal coating with interface cracks[J]. Engineering Fracture Mechanics, 2023, 277: 1-20.
    [16]
    GUO J H, YU J, XING Y M, et al. Thermoelastic analysis of a two-dimensional decagonal quasicrystal with a conductive elliptic hole[J]. Acta Mechanica, 2016, 227(9): 2595-2607. doi: 10.1007/s00707-016-1657-7
    [17]
    DING D H, YANG W G, HU C Z. Generalized elasticity theory of quasicrystals[J]. Physical Review B, 1993, 48: 7003-7010. doi: 10.1103/PhysRevB.48.7003
    [18]
    LI L H, LIU G T. Icosahedral quasicrystals solids with an elliptic hole under uniform heat flow[J]. Chinese Physics B, 2014, 23(5): 056101. doi: 10.1088/1674-1056/23/5/056101
    [19]
    ZHONG X C, LONG X Y, ZHANG L H. An extended thermal-medium crack model[J]. Applied Mathematical Modelling, 2018, 56: 202-216. doi: 10.1016/j.apm.2017.11.016
    [20]
    EDE A J. An Introduction to Heat Transfer: Principles and Calculations[M]. New York: Pergamon Press, 1967.
    [21]
    范天佑. 断裂理论基础[M]. 北京: 科学出版社, 2006.

    FAN Tianyou. The Theoretical Basis of Fracture[M]. Beijing: Science Press, 2006. (in Chinese)
    [22]
    FABRIKANT V I. Computation of infinite integrals involving three Bessel functions by introduction of new formalism[J]. ZAMM Journal of Applied Mathematics and Mechanics, 2003, 83(6): 363-374. doi: 10.1002/zamm.200310059
    [23]
    FAN T Y. Mathematical Theory of Elasticity of Quasicrystals and Its Applications[M]. Beijing: Science Press, 2017.
    [24]
    ZHONG X C, WU B, ZHANG K S. Thermally conducting collinear cracks engulfed by thermomechanical field in a material with orthotropy[J]. Theoretical and Applied Fracture Mechanics, 2013, 65: 61-68. doi: 10.1016/j.tafmec.2013.05.009
    [25]
    ZHONG X C, WU B. Thermoelastic analysis for an opening crack in an orthotropic material[J]. International Journal of Fracture, 2012, 173(1): 49-55. doi: 10.1007/s10704-011-9665-z
    [26]
    BADALIANCE R. Application of strain energy density factor to fatigue crack growth analysis[J]. Engineering Fracture Mechanics, 1980, 13(3): 657-666. doi: 10.1016/0013-7944(80)90094-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (333) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return