Citation: | QI Jin, WU Chuijie. LMS Method: a Spatiotemporal Optimal Low-Dimensional Dynamical Systems of Multi-Scale Numerical Simulation Method for Compressible Turbulence[J]. Applied Mathematics and Mechanics, 2024, 45(3): 318-336. doi: 10.21656/1000-0887.440294 |
[1] |
CHOU P Y, CHOU R L. 50 years of turbulence research in China[J]. Annual Review of Fluid Mechanics, 1995, 27: 1-15. doi: 10.1146/annurev.fl.27.010195.000245
|
[2] |
CHOU P Y. On an extension of Reynolds’ method of finding apparent stress and the nature of turbulence[J]. Acta Physica Sinica, 1940, 4(1): 1-34.
|
[3] |
FU S, WANG L. Theory of Turbulence Modelling[M]. Beijing: Science Press, 2023.
|
[4] |
GARNIER E, ADAMS N, SAGAUT P. Large Eddy Simulation for Compressible Flows[M]. New York: Springer, 2009.
|
[5] |
SPALART P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21: 252-263. doi: 10.1016/S0142-727X(00)00007-2
|
[6] |
FU D X, MA Y W, LI X L, et al. Direct Numerical Simulation of Compressible Turbulence[M]. Beijing: Science Press, 2010.
|
[7] |
WU C J, GUAN H, ZHAO H L. Large eddy simulation method based on small-scale SGS model, new development and applications of turbulence theory[C]//New Developments of Turbulence Theory and Applications. Shanghai: Shanghai University Press, 2000: 76-82.
|
[8] |
GUAN H, WU C J. Large-eddy simulations of turbulent flows with lattice Boltzmann dynamics and dynamical system sub-grid models[J]. Science in China Series E:Technological Sciences, 2009, 52(3): 670-679. doi: 10.1007/s11431-009-0069-5
|
[9] |
QI J, WU C J. Construction of spatiotemporal-coupling optimal low-dimensional dynamical systems for compressible Navier-Stokes equations[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1053-1085.
|
[10] |
BASSE N T. Turbulence intensity scaling: a fugue[J]. Fluids, 2019, 4(4): 180. doi: 10.3390/fluids4040180
|
[11] |
BASSE N T. Scaling of global properties of fluctuating and mean streamwise velocities in pipe flow: characterization of a high Reynolds number transition region[J]. Physics of Fluids, 2021, 33: 065127. doi: 10.1063/5.0054769
|
[12] |
TRITSCHLER V K, HICKEL S, HU X Y, et al. On the Kolmogorov inertial subrange developing from Richtmyer-Meshkov instability[J]. Physics of Fluids, 2013, 25: 071701. doi: 10.1063/1.4813608
|
[13] |
COURANT R, FRIEDRICHS K O. Supersonic Flow and Shock Waves[M]. New York: Interscience, 1948.
|