Volume 45 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
AN Ruimei, HOU Yongkang, LI Yunfeng, DUAN Shujin. On Energy Release Rates and Fracture Energy of Elastic Bodies With Cohesive Cracks[J]. Applied Mathematics and Mechanics, 2024, 45(3): 295-302. doi: 10.21656/1000-0887.440289
Citation: AN Ruimei, HOU Yongkang, LI Yunfeng, DUAN Shujin. On Energy Release Rates and Fracture Energy of Elastic Bodies With Cohesive Cracks[J]. Applied Mathematics and Mechanics, 2024, 45(3): 295-302. doi: 10.21656/1000-0887.440289

On Energy Release Rates and Fracture Energy of Elastic Bodies With Cohesive Cracks

doi: 10.21656/1000-0887.440289
  • Received Date: 2023-09-21
  • Rev Recd Date: 2023-11-15
  • Publish Date: 2024-03-01
  • According to the cohesive crack model, there is a cohesive region near the crack tip of a cracked elastomer, and the expressions of fracture parameters in the cohesive region make the core research content. Under the assumption of a cohesive zone existing at the tip of a linear crack in an elastic plate, the zone was replaced by a fictitious linear crack, and a definite nonlinear functional relationship between the fictitious crack opening displacement and the cohesion was given. An elastic plate with a mode-Ⅰ edge crack was taken as an example, and the analytical solution satisfying the fictitious crack condition was derived. On this basis, the calculating methods for energy release rate Ga of physical crack tip propagation and energy release rate Gb of cohesive crack tip propagation, were proposed. The relationships between Gb, the J integral and fracture energy GF were discussed. The results show that, critical energy release rate Gbc equals fracture energy GF, which can be used as a fracture parameter for crack instability propagation of materials with cohesive regions. The proposed method is applicable to all elastic bodies with mode-Ⅰ, Ⅱ and Ⅲ cohesive cracks.
  • loading
  • [1]
    ELICES M, GUINEA G V, GÓMEZ J, et al. The cohesive zone model: advantages, limitations and challenges[J]. Engineering Fracture Mechanics, 2002, 69(2): 137-163. doi: 10.1016/S0013-7944(01)00083-2
    [2]
    嵇醒. 断裂力学判据的评述[J]. 力学学报, 2016, 48(4): 741-753. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201604001.htm

    JI Xing. A critical review on criteria of fracture mechanics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 741-753. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201604001.htm
    [3]
    BARENBLATT G I. The formation of equilibrium crack during brittle fracture, general ideas and hypotheses, axially-symmetric cracks[J]. Journal of Applied Mathematics and Mechanics, 1959, 23(3): 622-636. doi: 10.1016/0021-8928(59)90157-1
    [4]
    DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104. doi: 10.1016/0022-5096(60)90013-2
    [5]
    VINCENTE P, XAI L, ANDY Z, et al. Integration of an adaptive cohesive zone and continuum ductile fracture model to simulate crack propagation in steel structures[J]. Engineering Fracture Mechanics, 2021, 258(6): 108041.
    [6]
    BARSOUM I, YURINDATAMA D T. Collapse analysis of a large plastic pipe using cohesive zone modelling technique[J]. International Journal of Pressure Vessels and Piping, 2020, 187(11): 104155.
    [7]
    邓健, 肖鹏程, 王增贤, 等. 基于黏聚区模型的ENF试件层间裂纹扩展分析[J]. 应用数学和力学, 2022, 43(5): 515-523. doi: 10.21656/1000-0887.430082

    DENG Jian, XIAO Pengcheng, WANG Zengxian, et al. Interlaminar crack propagation analysis of ENF specimens based on the cohesive zone model[J]. Applied Mathematics and Mechanics, 2022, 43(5): 515-523. (in Chinese) doi: 10.21656/1000-0887.430082
    [8]
    HILLERBORG A, MODÉER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773-781. doi: 10.1016/0008-8846(76)90007-7
    [9]
    NAIRN J A, AIMENE Y E. A re-evaluation of mixed-mode cohesive zone modeling based on strength concepts instead of traction laws[J]. Engineering Fracture Mechanics, 2021, 248: 107704. doi: 10.1016/j.engfracmech.2021.107704
    [10]
    YANG Z, ZHU Z, XIA Y, et al. Modified cohesive zone model for soft adhesive layer considering rate dependence of intrinsic fracture energy[J]. Engineering Fracture Mechanics, 2021, 258: 108089. doi: 10.1016/j.engfracmech.2021.108089
    [11]
    FARLE A S, KRISHNASAMY J, TURTELTAUB S, et al. Determination of fracture strength and fracture energy of (metallo-) ceramics by a wedge loading methodology and corresponding cohesive zone-based finite element analysis[J]. Engineering Fracture Mechanics, 2018, 196: 56-70. doi: 10.1016/j.engfracmech.2018.03.014
    [12]
    LI Y, REESE S, SIMON J W. Modeling the fiber bridging effect in cracked wood and paperboard using a cohesive zone model[J]. Engineering Fracture Mechanics, 2018, 196: 83-97. doi: 10.1016/j.engfracmech.2018.04.002
    [13]
    ESMAILI A, TAHERI-BEHROOZ F. Effect of cohesive zone length on the delamination growth of the composite laminates under cyclic loading[J]. Engineering Fracture Mechanics, 2020, 237: 107246 doi: 10.1016/j.engfracmech.2020.107246
    [14]
    PONNUSAMI S A, KRISHNASAMY J, TURTELTAUB S, et al. A cohesive-zone crack healing model for self-healing materials[J]. International Journal of Solids and Structures, 2018, 134: 249-263. doi: 10.1016/j.ijsolstr.2017.11.004
    [15]
    ETIENNE M, MOUAD J, FREDERIC J, et al. A cohesive zone model for the characterization of adhesion between cement paste and aggregates[J]. Construction and Building Materials, 2018, 193: 64-71. doi: 10.1016/j.conbuildmat.2018.10.188
    [16]
    DUAN S J, NAKAGAWA K. Stress functions with finite stress concentration at the crack tips for central cracked panel[J]. Engineering Fracture Mechanics, 1988, 29(5): 517-526. doi: 10.1016/0013-7944(88)90177-4
    [17]
    段树金, 藤井康寿, 中川建治. 构成单材料裂纹和双材料界面裂纹有限应力集中的一般解析函数[J]. 应用数学和力学, 2018, 39(12): 1364-1376. doi: 10.21656/1000-0887.390030

    DUAN Shujin, FUJⅡ Koju, NAKAGAWA Kenji. Construction of general analytic functions with finite stress concentration for mono-material cracks and bi-material interface cracks[J]. Applied Mathematics and Mechanics, 2018, 39(12): 1364-1376. (in Chinese) doi: 10.21656/1000-0887.390030
    [18]
    RICE J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks[J]. Journal of Applied Mechanics, 1968, 35(2): 379-386. doi: 10.1115/1.3601206
    [19]
    DUAN S J, FUJⅡ K, NAKAGAWA K. Finite stress concentrations and J-integrals from normal loads on a penny-shaped crack[J]. Engineering Fracture Mechanics, 1989, 32(2): 67-176.
    [20]
    AN R M, DUAN S J, GUO Q M. A new method to determine tensile strain softening curve of quasi-brittle materials[C]//Sustainable Solutions in Structural Engineering and Construction. Singapore: Research Publishing, 2014.
    [21]
    PETERSSON P E. Crack growth and formation of fracture zones in plain concrete and similar materials[R]. 1981.
    [22]
    郭向勇, 方坤河, 冷发光. 混凝土断裂能的理论分析[J]. 哈尔滨工业大学学报, 2005, 37(9): 1219-1222. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200509017.htm

    GUO Xiangyong, FANG Kunhe, LENG Faguang. Analysis of the theory fracture energy of concrete[J]. Journal of Harbin Institute of Technology, 2005, 37(9): 1219-1222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200509017.htm
    [23]
    卿龙邦, 李庆斌, 管俊峰. 混凝土断裂过程区长度计算方法研究[J]. 工程力学, 2012, 29(4): 197-201. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201204032.htm

    QING Longbang, LI Qingbin, GUAN Junfeng. Calculation method of the length of fracture process zone of concrete[J]. Engineering Mechanics, 2012, 29(4): 197-201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201204032.htm
    [24]
    徐平, 郑满奎, 王超, 等. 考虑尺寸及纤维掺量影响的高强混凝土断裂能试验研究[J]. 硅酸盐通报, 2020, 39(11): 3488-3495. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202011013.htm

    XU Ping, ZHENG Mankui, WANG Chao, et al. Experimental study on fracture energy of high strength concrete considering the influence of size and fiber content[J]. Bulletin of The Chinese Ceramic Society, 2020, 39(11): 3488-3495. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202011013.htm
    [25]
    段树金, 解沅衡, 侯永康, 等. 含裂纹简支梁在均布荷载作用下的内聚区模型解析函数[J]. 应用力学学报, 2019, 36(2): 310-315. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201902010.htm

    DUAN Shujin, XIE Yuanheng, HOU Yongkang, et al. Cohesive zone model analytic function to simply supported beam with an edge-crack under uniform distributed load[J]. Chinese Journal of Applied Mechanics, 2019, 36(2): 310-315. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201902010.htm
    [26]
    侯永康, 段树金, 安蕊梅. 满足断裂过程区裂纹张开位移条件应力函数的半解析解法[J]. 应用数学和力学, 2018, 39(8): 979-988. doi: 10.21656/1000-0887.380296

    HOU Yongkang, DUAN Shujin, AN Ruimei. Cohesive zone model analytic function to simply supported beam with an edge-crack under uniform distributed load[J]. Applied Mathematics and Mechanics, 2018, 39(8): 979-988. (in Chinese) doi: 10.21656/1000-0887.380296
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (470) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return