Citation: | WANG Senlin, LI Jinbao, MA Hongyan, LI Rui. Analytical Forced Vibration Solutions of Orthotropic Cantilever Rectangular Thin Plates With the Symplectic Superposition Method[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1117-1132. doi: 10.21656/1000-0887.440277 |
[1] |
ALFOONEH M, HAJABBASI M. Free and forced vibration analysis of thin and thick plates by the finite element method using Lagrange and heterosis elements and comparison of these elements[J]. WSEAS Transactions on Systems, 2007, 6(1): 235-241.
|
[2] |
MEI C. A finite element method for nonlinear forced vibrations of rectangular plates[J]. AIAA Journal, 1985, 23(7): 1104-1110. doi: 10.2514/3.9044
|
[3] |
NAYAK A, SINHA L, JENA T. Forced vibration analysis of laminated composite stiffened plates[J]. International Journal of Structural Engineering, 2021, 11(2): 173. doi: 10.1504/IJSTRUCTE.2021.114263
|
[4] |
ALTINTA G, BAGCI M. Determination of the steady-state response of viscoelastically supported rectangular othotropic mass loaded plates by an energy-based finite difference method[J]. Journal of Vibration and Control, 2005, 11(12): 1535-1552. doi: 10.1177/1077546305061037
|
[5] |
NAJARZADEH L, MOVAHEDIAN B, AZHARI M. Free vibration and buckling analysis of thin plates subjected to high gradients stresses using the combination of finite strip and boundary element methods[J]. Thin-Walled Structures, 2018, 123: 36-47. doi: 10.1016/j.tws.2017.11.015
|
[6] |
HEUER R, IRSCHIK H. A boundary element method for eigenvalue problems of polygonal membranes and plates[J]. Acta Mechanica, 1987, 66(1/4): 9-20.
|
[7] |
RODRIGUES J D, ROQUE C M C, FERREIRA A J M. An improved meshless method for the static and vibration analysis of plates[J]. Mechanics Based Design of Structures and Machines, 2013, 41(1): 21-39. doi: 10.1080/15397734.2012.680348
|
[8] |
HOSSEINI S, RAHIMI G, ANANI Y. A meshless collocation method based on radial basis functions for free and forced vibration analysis of functionally graded plates using FSDT[J]. Engineering Analysis With Boundary Elements, 2021, 125: 168-177. doi: 10.1016/j.enganabound.2020.12.016
|
[9] |
王伟, 伊士超, 姚林泉. 分析复合材料层合板弯曲和振动的一种有效无网格方法[J]. 应用数学和力学, 2015, 36(12): 1274-1284. doi: 10.3879/j.issn.1000-0887.2015.12.006
WANG Wei, YI Shichao, YAO Linquan. An effective meshfree method for bending and vibration analyses of laminated composite plates[J]. Applied Mathematics and Mechanics, 2015, 36(12): 1274-1284. (in Chinese) doi: 10.3879/j.issn.1000-0887.2015.12.006
|
[10] |
彭林欣, 张鉴飞, 陈卫. 基于3D连续壳理论和无网格法的任意壳受迫振动分析[J]. 固体力学学报, 2024, 45(2): 238-252.
PENG Linxin, ZHANG Jianfei, CHEN Wei. Forced vibration analysis of arbitrary shells based on 3D continuous shell theory and meshless method[J]. Chinese Journal of Solid Mechanics, 2024, 45(2): 238-252. (in Chinese)
|
[11] |
ZAMANIFAR H, SARRAMI-FOROUSHANI S, AZHARI M. Static and dynamic analysis of corrugated-core sandwich plates using finite strip method[J]. Engineering Structures, 2019, 183: 30-51. doi: 10.1016/j.engstruct.2018.12.102
|
[12] |
SHEIKH A H, MUSHOPADYAY M. Forced vibration of plates with elastically restrained edges by the spline finite strip method[J]. JSME International Journal (Series C): Dynamics Control Robotics Design and Manufacturing, 1993, 36(3): 301-306. doi: 10.1299/jsmec1993.36.301
|
[13] |
YUAN W, DAWE D J. Free vibration and stability analysis of stiffened sandwich plates[J]. Composite Structures, 2004, 63(1): 123-137. doi: 10.1016/S0263-8223(03)00139-9
|
[14] |
陈明飞, 刘坤鹏, 靳国永, 等. 面内功能梯度三角形板等几何面内振动分析[J]. 应用数学和力学, 2020, 41(2): 156-170. doi: 10.21656/1000-0887.400171
CHEN Mingfei, LIU Kunpeng, JIN Guoyong, et al. Isogeometric in-plane vibration analysis of functionally graded triangular plates[J]. Applied Mathematics and Mechanics, 2020, 41(2): 156-170. (in Chinese) doi: 10.21656/1000-0887.400171
|
[15] |
LAURA P A A, DURAN R. A note on forced vibrations of a clamped rectangular plate[J]. Journal of Sound and Vibration, 1975, 42(1): 129-135. doi: 10.1016/0022-460X(75)90307-7
|
[16] |
SUSEMIHL E A, LAURA P A A. Forced vibrations of thin, elastic, rectangular plates with edges elastically restrained against rotation[J]. Journal of Ship Research, 1977, 21(1): 24-29. doi: 10.5957/jsr.1977.21.1.24
|
[17] |
GORMAN D J. Dynamic response of a rectangular plate to a bending moment distributed along the diagonal[J]. AIAA Journal, 1982, 20(11): 1616-1621. doi: 10.2514/3.7994
|
[18] |
付宝连, 李农. 弹性矩形薄板受迫振动的功的互等定理法(Ⅰ): 四边固定的矩形板和三边固定的矩形板[J]. 应用数学和力学, 1989, 10(8): 693-714. http://www.applmathmech.cn/article/id/3613
FU Baolian, LI Nong. The method of the reciprocal theorem of forced vibration for the elastic thin rectangular plates (Ⅰ): rectangular plates with four clamped edges and with three clamped edges[J]. Applied Mathematics and Mechanics, 1989, 10(8): 693-714. (in Chinese) http://www.applmathmech.cn/article/id/3613
|
[19] |
付宝连, 李农. 弹性矩形薄板受迫振动的功的互等定理法(Ⅱ): 二邻边固定的矩形板[J]. 应用数学和力学, 1990, 11(11): 977-988. http://www.applmathmech.cn/article/id/3452
FU Baolian, LI Nong. The method of the reciprocal theorem of forced vibration for the elastic thin rectangular plates (Ⅱ): rectangular plates with two adjacent clamped edges[J]. Applied Mathematics and Mechanics, 1990, 11(11): 977-988. (in Chinese) http://www.applmathmech.cn/article/id/3452
|
[20] |
付宝连, 李农. 弹性矩形薄板受迫振动的功的互等定理法(Ⅲ): 悬臂矩形板[J]. 应用数学和力学, 1991, 12(7): 621-638. http://www.applmathmech.cn/article/id/3354
FU Baolian, LI Nong. The method of the reciprocal theorem of forced vibration for the elastic thin rectangular plates (Ⅲ): cantilever rectangular plates[J]. Applied Mathematics and Mechanics, 1991, 12(7): 621-638. (in Chinese) http://www.applmathmech.cn/article/id/3354
|
[21] |
XING Y F, LIU B. New exact solutions for free vibrations of thin orthotropic rectangular plates[J]. Composite Structures, 2009, 89(4): 567-574. doi: 10.1016/j.compstruct.2008.11.010
|
[22] |
CHEN Y, YUE X. Forced vibration of bending thick rectangular plates with different boundary conditions under concentrated load[J]. Chinese Journal of Computational Mechanics, 2022, 39(6): 845-851.
|
[23] |
陈英杰, 程剑锋, 陈杰, 等. 集中谐载力作用下三边固定一边自由板的受迫振动[J]. 动力学与控制学报, 2005, 3(3): 47-51.
CHEN Yingjie, CHENG Jianfeng, CHEN Jie, et al. The forced vibration of the plate with three clamped and the other free under concentrated load[J]. Journal of Dynamics and Control, 2005, 3(3): 47-51. (in Chinese)
|
[24] |
LI R, ZHONG Y, LI M. Analytic bending solutions of free rectangular thin plates resting on elastic foundations by a new symplectic superposition method[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469(2153): 20120681. doi: 10.1098/rspa.2012.0681
|
[25] |
ZHENG X, SUN Y, HUANG M, et al. Symplectic superposition method-based new analytic bending solutions of cylindrical shell panels[J]. International Journal of Mechanical Sciences, 2019, 152: 432-442. doi: 10.1016/j.ijmecsci.2019.01.012
|
[26] |
LI R, ZHENG X, WANG P, et al. New analytic free vibration solutions of orthotropic rectangular plates by a novel symplectic approach[J]. Acta Mechanica, 2019, 230(9): 3087-3101. doi: 10.1007/s00707-019-02448-1
|
[27] |
XU D, NI Z, LI Y, et al. On the symplectic superposition method for free vibration of rectangular thin plates with mixed boundary constraints on an edge[J]. Theoretical and Applied Mechanics Letters, 2021, 11(5): 100293. doi: 10.1016/j.taml.2021.100293
|
[28] |
ZHOU C, AN D, ZHOU J, et al. On new buckling solutions of moderately thick rectangular plates by the symplectic superposition method within the Hamiltonian-system framework[J]. Applied Mathematical Modelling, 2021, 94: 226-241. doi: 10.1016/j.apm.2021.01.020
|
[29] |
HU Z, ZHENG X, AN D, et al. New analytic buckling solutions of side-cracked rectangular thin plates by the symplectic superposition method[J]. International Journal of Mechanical Sciences, 2021, 191: 106051. doi: 10.1016/j.ijmecsci.2020.106051
|
[30] |
LEISSA A W. Vibration of plates: NASA-SP-160[R]. 1969.
|
[31] |
YAO W, ZHONG W, LIM C W. Symplectic Elasticity[M]. Singapore: World Scientific, 2009.
|