Citation: | QI Wenchao, WANG Qiongyao, PING Kai, CHEN Xiner. Study of Inhibitory Effects of Elastic Membranes on Liquid Sloshing in Partially Filled Tank Vehicles[J]. Applied Mathematics and Mechanics, 2024, 45(3): 365-378. doi: 10.21656/1000-0887.440271 |
[1] |
KOLAEI A, RAKHEJA S. Free vibration analysis of coupled sloshing-flexible membrane system in a liquid container[J]. Journal of Vibration and Control, 2019, 25(1): 84-97. doi: 10.1177/1077546318771221
|
[2] |
KOLAEI A, RAKHEJA S, RICHARD M J. An efficient methodology for simulating roll dynamics of a tank vehicle coupled with transient fluid slosh[J]. Journal of Vibration and Control, 2017, 23(19): 3216-3232. doi: 10.1177/1077546315627565
|
[3] |
WOODROOFFE J. Evaluation of dangerous goods vehicle safety performance[R]. 2000.
|
[4] |
李杰, 于志新, 程新新, 等. 车-液耦合响应下液罐车稳定性控制仿真[J]. 油气储运, 2020, 39(2): 188-194. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202002009.htm
LI Jie, YU Zhixin, CHENG Xinxin, et al. Simulation of stability control of tank trucks under vehicle-liquid coupling response[J]. Oil & Gas Storage and Transportation, 2020, 39(2): 188-194. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202002009.htm
|
[5] |
于志新, 李杰, 程新新, 等. 液罐车稳定性最优控制仿真[J]. 油气储运, 2019, 38(8): 885-891. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201908007.htm
YU Zhixin, LI Jie, CHENG Xinxin, et al. Simulation on the optimal control of the stability of liquid tank truck[J]. Oil & Gas Storage and Transportation, 2019, 38(8): 885-891. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201908007.htm
|
[6] |
RAKHEJA S, SANKAR S, RANGANATHAN R. Roll plane analysis of articulated tank vehicles during steady turning[J]. Vehicle System Dynamics, 1988, 17(1/2): 81-104.
|
[7] |
WANG Z Q, RAKHEJA S, SUN C Z. Influence of partition location on the braking performance of a partially-filled tank truck[R]. 1995.
|
[8] |
BELLEZI C A, CHENG L Y, OKADA T, et al. Optimized perforated bulkhead for sloshing mitigation and control[J]. Ocean Engineering, 2019, 187: 106171. doi: 10.1016/j.oceaneng.2019.106171
|
[9] |
YU L T, XUE M A, JIANG Z Y. Experimental investigation of parametric sloshing in a tank with vertical baffles[J]. Ocean Engineering, 2020, 213: 107783. doi: 10.1016/j.oceaneng.2020.107783
|
[10] |
包文红, 张应龙, 班涛, 等. 液罐车内液体晃动对防波板的冲击仿真[J]. 油气储运, 2022, 41(9): 1087-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202209012.htm
BAO Wenhong, ZHANG Yinglong, BAN Tao, et al. Simulation on impact of liquid sloshing on baffles in liquid tankers[J]. Oil & Gas Storage and Transportation, 2022, 41(9): 1087-1094. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202209012.htm
|
[11] |
钟文坤, 吴玖荣, 孙连杨. 考虑挡板间水动力相互作用影响的矩形TLD水箱阻尼比分析[J]. 应用数学和力学, 2021, 42(1): 71-81. doi: 10.21656/1000-0887.410154
ZHONG Wenkun, WU Jiurong, SUN Lianyang. Damping ratio analysis of rectangular TLD tanks with hydrodynamic interaction effects between baffles[J]. Applied Mathematics and Mechanics, 2021, 42(1): 71-81. (in Chinese)) doi: 10.21656/1000-0887.410154
|
[12] |
GOUDARZI M A, DANESH P N. Numerical investigation of a vertically baffled rectangular tank under seismic excitation[J]. Journal of Fluids and Structures, 2016, 61: 450-460. doi: 10.1016/j.jfluidstructs.2016.01.001
|
[13] |
KOLAEI A, RAKHEJA S, RICHARD M J. A coupled multimodal and boundary-element method for analysis of anti-slosh effectiveness of partial baffles in a partly-filled container[J]. Computers & Fluids, 2015, 107: 43-58.
|
[14] |
HASHEMINEJAD S M, MOHAMMADI M M, JARRAHI M. Liquid sloshing in partly-filled laterally-excited circular tanks equipped with baffles[J]. Journal of Fluids and Structures, 2014, 44: 97-114. doi: 10.1016/j.jfluidstructs.2013.09.019
|
[15] |
WANG Q Y, RAKHEJA S, SHANGGUAN W B. Effect of baffle geometry and air pressure on transient fluid slosh in partially filled tanks[J]. International Journal of Heavy Vehicle Systems, 2017, 24(4): 378-401. doi: 10.1504/IJHVS.2017.087241
|
[16] |
VNAL U O, BILICI G, AKYILDIZ H. Liquid sloshing in a two-dimensional rectangular tank: a numerical investigation with a T-shaped baffle[J]. Ocean Engineering, 2019, 187: 106183. doi: 10.1016/j.oceaneng.2019.106183
|
[17] |
KORKMAZ F C, GVZEL B. On the effects of the number of baffles in sloshing dynamics[J]. Ships and Offshore Structures, 2021, 18(1): 1-13.
|
[18] |
THIRUNAVUKKARASU B, RAJAGOPAL T K R. Numerical investigation of sloshing in tank with horivert baffles under resonant excitation using CFD code[J]. Thin-Walled Structures, 2021, 161: 107517. doi: 10.1016/j.tws.2021.107517
|
[19] |
HWANG S C, PARK J C, GOTOH H, et al. Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid-structure interaction analysis method[J]. Ocean Engineering, 2016, 118: 227-241. doi: 10.1016/j.oceaneng.2016.04.006
|
[20] |
ZHANG Z L, KHALID M S U, LONG T, et al. Investigations on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method[J]. Journal of Fluids and Structures, 2020, 94: 102942. doi: 10.1016/j.jfluidstructs.2020.102942
|
[21] |
BAUER H F. Coupled frequencies of a liquid in a circular cylindrical container with elastic liquid surface cover[J]. Journal of Sound and Vibration, 1995, 180(5): 689-704. doi: 10.1006/jsvi.1995.0109
|
[22] |
TARIVERDILO S, MIRZAPOUR J, SHAHMARDANI M, et al. Free vibration of membrane/bounded incompressible fluid[J]. Applied Mathematics and Mechanics, 2012, 33: 1167-1178. doi: 10.1007/s10483-012-1613-8
|
[23] |
CHIBA M, MURASE R, KIMURA R, et al. Experimental studies on the dynamic stability of liquid in a spherical tank covered with diaphragm under vertical excitation[J]. Journal of Fluids and Structures, 2016, 61: 218-248. doi: 10.1016/j.jfluidstructs.2015.11.011
|
[24] |
WANG Q Y, JIANG L, CHAI M, et al. Numerical and experimental analysis of the effect of elastic membrane on liquid sloshing in partially filled tank vehicles[J]. Mechanics Based Design of Structures and Machines, 2021, 51(3): 1741-1757.
|
[25] |
WANG Q Y, LIN G M, JIANG L, et al. Numerical and experimental study of anti-slosh performance of combined baffles in partially filled tank vehicles[J]. International Journal of Pressure Vessels and Piping, 2022, 196: 104555. doi: 10.1016/j.ijpvp.2021.104555
|
[26] |
PELTONEN P, KANNINEN P, LAURILA E, et al. The ghost fluid method for OpenFOAM: a comparative study in marine context[J]. Ocean Engineering, 2020, 216: 108007. doi: 10.1016/j.oceaneng.2020.108007
|
[27] |
GORDNIER R E. High fidelity computational simulation of a membrane wing airfoil[J]. Journal of Fluids and Structures, 2009, 25(5): 897-917. doi: 10.1016/j.jfluidstructs.2009.03.004
|
[28] |
孙旭, 张家忠, 黄必武. 弹性薄膜类流固耦合问题的CBS有限元分析[J]. 力学学报, 2013, 45(5): 787-791. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201305019.htm
SUN Xu, ZHANG Jiazhong, HUANG Biwu. CBS finite element analysis of fluid structure coupling problems in elastic thin films[J]. Chinese Journal of Theoretical and Applied, 2013, 45(5): 787-791. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201305019.htm
|
[29] |
BUNGARTZ H J, LINDNER F, GATZHAMMER B, et al. preCICE: a fully parallel library for multi-physics surface coupling[J]. Computers & Fluids, 2016, 141: 250-258.
|
[30] |
LIAO K P, HU C H, SUEYOSHI M. Free surface flow impacting on an elastic structure: experiment versus numerical simulation[J]. Applied Ocean Research, 2015, 50: 192-208. doi: 10.1016/j.apor.2015.02.002
|