Volume 45 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
QI Wenchao, WANG Qiongyao, PING Kai, CHEN Xiner. Study of Inhibitory Effects of Elastic Membranes on Liquid Sloshing in Partially Filled Tank Vehicles[J]. Applied Mathematics and Mechanics, 2024, 45(3): 365-378. doi: 10.21656/1000-0887.440271
Citation: QI Wenchao, WANG Qiongyao, PING Kai, CHEN Xiner. Study of Inhibitory Effects of Elastic Membranes on Liquid Sloshing in Partially Filled Tank Vehicles[J]. Applied Mathematics and Mechanics, 2024, 45(3): 365-378. doi: 10.21656/1000-0887.440271

Study of Inhibitory Effects of Elastic Membranes on Liquid Sloshing in Partially Filled Tank Vehicles

doi: 10.21656/1000-0887.440271
  • Received Date: 2023-09-18
  • Rev Recd Date: 2023-11-21
  • Publish Date: 2024-03-01
  • To improve the braking performance and roll stability limits of liquid tank vehicles, a numerical bi-directional fluid-structure coupling model was established to study the anti-slosh effects of elastic membranes on liquid sloshing in partially filled tank vehicles. Laboratory experiments were conducted to verify the validity of the numerical model. The validated model was further used to study the effects of various configurations of elastic membranes on sloshing responses, such as liquid load transfer, sloshing forces, pitch moments, and tank wall pressures. Two different tank configurations, namely tanks without membrane and tanks with various combinations of elastic membranes, were considered in the study for comparison. The results show that, the addition of membranes can significantly limit the movement of the liquid, resulting in dramatically reduced pitch moments caused by sloshing, which will improve the braking performance and roll stability limits of the tank vehicles.
  • loading
  • [1]
    KOLAEI A, RAKHEJA S. Free vibration analysis of coupled sloshing-flexible membrane system in a liquid container[J]. Journal of Vibration and Control, 2019, 25(1): 84-97. doi: 10.1177/1077546318771221
    [2]
    KOLAEI A, RAKHEJA S, RICHARD M J. An efficient methodology for simulating roll dynamics of a tank vehicle coupled with transient fluid slosh[J]. Journal of Vibration and Control, 2017, 23(19): 3216-3232. doi: 10.1177/1077546315627565
    [3]
    WOODROOFFE J. Evaluation of dangerous goods vehicle safety performance[R]. 2000.
    [4]
    李杰, 于志新, 程新新, 等. 车-液耦合响应下液罐车稳定性控制仿真[J]. 油气储运, 2020, 39(2): 188-194. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202002009.htm

    LI Jie, YU Zhixin, CHENG Xinxin, et al. Simulation of stability control of tank trucks under vehicle-liquid coupling response[J]. Oil & Gas Storage and Transportation, 2020, 39(2): 188-194. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202002009.htm
    [5]
    于志新, 李杰, 程新新, 等. 液罐车稳定性最优控制仿真[J]. 油气储运, 2019, 38(8): 885-891. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201908007.htm

    YU Zhixin, LI Jie, CHENG Xinxin, et al. Simulation on the optimal control of the stability of liquid tank truck[J]. Oil & Gas Storage and Transportation, 2019, 38(8): 885-891. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201908007.htm
    [6]
    RAKHEJA S, SANKAR S, RANGANATHAN R. Roll plane analysis of articulated tank vehicles during steady turning[J]. Vehicle System Dynamics, 1988, 17(1/2): 81-104.
    [7]
    WANG Z Q, RAKHEJA S, SUN C Z. Influence of partition location on the braking performance of a partially-filled tank truck[R]. 1995.
    [8]
    BELLEZI C A, CHENG L Y, OKADA T, et al. Optimized perforated bulkhead for sloshing mitigation and control[J]. Ocean Engineering, 2019, 187: 106171. doi: 10.1016/j.oceaneng.2019.106171
    [9]
    YU L T, XUE M A, JIANG Z Y. Experimental investigation of parametric sloshing in a tank with vertical baffles[J]. Ocean Engineering, 2020, 213: 107783. doi: 10.1016/j.oceaneng.2020.107783
    [10]
    包文红, 张应龙, 班涛, 等. 液罐车内液体晃动对防波板的冲击仿真[J]. 油气储运, 2022, 41(9): 1087-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202209012.htm

    BAO Wenhong, ZHANG Yinglong, BAN Tao, et al. Simulation on impact of liquid sloshing on baffles in liquid tankers[J]. Oil & Gas Storage and Transportation, 2022, 41(9): 1087-1094. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202209012.htm
    [11]
    钟文坤, 吴玖荣, 孙连杨. 考虑挡板间水动力相互作用影响的矩形TLD水箱阻尼比分析[J]. 应用数学和力学, 2021, 42(1): 71-81. doi: 10.21656/1000-0887.410154

    ZHONG Wenkun, WU Jiurong, SUN Lianyang. Damping ratio analysis of rectangular TLD tanks with hydrodynamic interaction effects between baffles[J]. Applied Mathematics and Mechanics, 2021, 42(1): 71-81. (in Chinese)) doi: 10.21656/1000-0887.410154
    [12]
    GOUDARZI M A, DANESH P N. Numerical investigation of a vertically baffled rectangular tank under seismic excitation[J]. Journal of Fluids and Structures, 2016, 61: 450-460. doi: 10.1016/j.jfluidstructs.2016.01.001
    [13]
    KOLAEI A, RAKHEJA S, RICHARD M J. A coupled multimodal and boundary-element method for analysis of anti-slosh effectiveness of partial baffles in a partly-filled container[J]. Computers & Fluids, 2015, 107: 43-58.
    [14]
    HASHEMINEJAD S M, MOHAMMADI M M, JARRAHI M. Liquid sloshing in partly-filled laterally-excited circular tanks equipped with baffles[J]. Journal of Fluids and Structures, 2014, 44: 97-114. doi: 10.1016/j.jfluidstructs.2013.09.019
    [15]
    WANG Q Y, RAKHEJA S, SHANGGUAN W B. Effect of baffle geometry and air pressure on transient fluid slosh in partially filled tanks[J]. International Journal of Heavy Vehicle Systems, 2017, 24(4): 378-401. doi: 10.1504/IJHVS.2017.087241
    [16]
    VNAL U O, BILICI G, AKYILDIZ H. Liquid sloshing in a two-dimensional rectangular tank: a numerical investigation with a T-shaped baffle[J]. Ocean Engineering, 2019, 187: 106183. doi: 10.1016/j.oceaneng.2019.106183
    [17]
    KORKMAZ F C, GVZEL B. On the effects of the number of baffles in sloshing dynamics[J]. Ships and Offshore Structures, 2021, 18(1): 1-13.
    [18]
    THIRUNAVUKKARASU B, RAJAGOPAL T K R. Numerical investigation of sloshing in tank with horivert baffles under resonant excitation using CFD code[J]. Thin-Walled Structures, 2021, 161: 107517. doi: 10.1016/j.tws.2021.107517
    [19]
    HWANG S C, PARK J C, GOTOH H, et al. Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid-structure interaction analysis method[J]. Ocean Engineering, 2016, 118: 227-241. doi: 10.1016/j.oceaneng.2016.04.006
    [20]
    ZHANG Z L, KHALID M S U, LONG T, et al. Investigations on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method[J]. Journal of Fluids and Structures, 2020, 94: 102942. doi: 10.1016/j.jfluidstructs.2020.102942
    [21]
    BAUER H F. Coupled frequencies of a liquid in a circular cylindrical container with elastic liquid surface cover[J]. Journal of Sound and Vibration, 1995, 180(5): 689-704. doi: 10.1006/jsvi.1995.0109
    [22]
    TARIVERDILO S, MIRZAPOUR J, SHAHMARDANI M, et al. Free vibration of membrane/bounded incompressible fluid[J]. Applied Mathematics and Mechanics, 2012, 33: 1167-1178. doi: 10.1007/s10483-012-1613-8
    [23]
    CHIBA M, MURASE R, KIMURA R, et al. Experimental studies on the dynamic stability of liquid in a spherical tank covered with diaphragm under vertical excitation[J]. Journal of Fluids and Structures, 2016, 61: 218-248. doi: 10.1016/j.jfluidstructs.2015.11.011
    [24]
    WANG Q Y, JIANG L, CHAI M, et al. Numerical and experimental analysis of the effect of elastic membrane on liquid sloshing in partially filled tank vehicles[J]. Mechanics Based Design of Structures and Machines, 2021, 51(3): 1741-1757.
    [25]
    WANG Q Y, LIN G M, JIANG L, et al. Numerical and experimental study of anti-slosh performance of combined baffles in partially filled tank vehicles[J]. International Journal of Pressure Vessels and Piping, 2022, 196: 104555. doi: 10.1016/j.ijpvp.2021.104555
    [26]
    PELTONEN P, KANNINEN P, LAURILA E, et al. The ghost fluid method for OpenFOAM: a comparative study in marine context[J]. Ocean Engineering, 2020, 216: 108007. doi: 10.1016/j.oceaneng.2020.108007
    [27]
    GORDNIER R E. High fidelity computational simulation of a membrane wing airfoil[J]. Journal of Fluids and Structures, 2009, 25(5): 897-917. doi: 10.1016/j.jfluidstructs.2009.03.004
    [28]
    孙旭, 张家忠, 黄必武. 弹性薄膜类流固耦合问题的CBS有限元分析[J]. 力学学报, 2013, 45(5): 787-791. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201305019.htm

    SUN Xu, ZHANG Jiazhong, HUANG Biwu. CBS finite element analysis of fluid structure coupling problems in elastic thin films[J]. Chinese Journal of Theoretical and Applied, 2013, 45(5): 787-791. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201305019.htm
    [29]
    BUNGARTZ H J, LINDNER F, GATZHAMMER B, et al. preCICE: a fully parallel library for multi-physics surface coupling[J]. Computers & Fluids, 2016, 141: 250-258.
    [30]
    LIAO K P, HU C H, SUEYOSHI M. Free surface flow impacting on an elastic structure: experiment versus numerical simulation[J]. Applied Ocean Research, 2015, 50: 192-208. doi: 10.1016/j.apor.2015.02.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (287) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return