Citation: | FAN Yajie, LI Yan, LI Zhongpan, CHEN Huijian, FENG Zhiqiang. Smoothed Finite Element Analysis of Contact and Large Deformation Problems[J]. Applied Mathematics and Mechanics, 2024, 45(2): 127-143. doi: 10.21656/1000-0887.440251 |
[1] |
YASKEVICH A. Real time math simulation of contact interaction during spacecraft docking and berthing[J]. Journal of Mechanics Engineering and Automation, 2014, 4: 1-15.
|
[2] |
HUGHES P C. Spacecraft Attitude Dynamics[M]. Courier Corporation, 2012.
|
[3] |
SUN Y, ZHAI W M, GUO Y. A robust non-Hertzian contact method for wheel-rail normal contact analysis[J]. Vehicle System Dynamics, 2018, 56(10/12): 1899-1921.
|
[4] |
BROGLIATO B. Nonsmooth Mechanics: Models, Dynamics and Control[M]. Springer, 2016.
|
[5] |
ZHANG J, WANG Q. Modeling and simulation of a frictional translational joint with a flexible slider and clearance[J]. Multibody System Dynamics, 2016, 38(4): 367-389. doi: 10.1007/s11044-015-9474-7
|
[6] |
聂攀. SMA弹簧-摩擦支座在网壳结构隔震控制中的参数分析[D]. 北京: 北京建筑大学, 2016.
NIE Pan. Parametric analysis of SMA spring-friction bearings in the seismic control of mesh-shell structures[D]. Beijing: Beijing University of Architecture, 2016. (in Chinese)
|
[7] |
杨静, 潘文, 苏何先, 等. 天然橡胶支座大变形压剪性能的双非线性超弹性理论和实验研究[J]. 工程力学, 2022, 39(8): 200-222. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202208022.htm
YANG Jing, PAN Wen, SU Hexian, et al. Double nonlinear hyperelastic theory and experimental research on the large deformation of natural rubber bearing in compression and shear[J]. Engineering Mechanics, 2022, 39(8): 200-222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202208022.htm
|
[8] |
郑伟, 闫立志, 张泽云, 等. 动车组车钩缓冲装置橡胶缓冲器失效机理分析及优化[J]. 城市轨道交通研究, 2022, 25(6): 171-175. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202206034.htm
ZHENG Wei, YAN Lizhi, ZHANG Zeyun, et al. Failure mechanism analysis and performance optimization of rubber draft gear of coupler buffer in EMU[J]. Urban Mass Transit, 2022, 25(6): 171-175. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202206034.htm
|
[9] |
罗操群, 孙加亮, 文浩, 等多刚体系统分离策略及释放动力学研究[J]. 力学学报, 2020, 52(2): 503-513. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202002019.htm
LUO Caoqun, SUN Jialiang, WEN Hao, et al. Research on separation strategy and deployment dynamics of a space multi-rigid-body system[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 503-513. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202002019.htm
|
[10] |
BELYTSCHKO T, NEAL M O. Contact-impact by the pinball algorithm with penalty and Lagrangian methods[J]. International Journal for Numerical Methods in Engineering, 2010, 31(3): 547-572.
|
[11] |
FRANCAVILLA A, ZIENKIEWICZ O C. A note on numerical computation of elastic contact problems[J]. International Journal for Numerical Methods in Engineering, 2010, 9(4): 913-924.
|
[12] |
DE SAXCÉ G, FENG Z Q. New inequality and functional for contact with friction: the implicit standard material approach[J]. Mechanics of Structures and Machines, 1991, 19(3): 301-325. doi: 10.1080/08905459108905146
|
[13] |
FENG Z Q, JOLI P, CROS J M, et al. The bi-potential method applied to the modeling of dynamic problems with friction[J]. Computational Mechanics, 2005, 36(5): 375-383. doi: 10.1007/s00466-005-0663-8
|
[14] |
周洋靖, 冯志强, 彭磊. 双势积分算法在非关联材料中的应用[J]. 应用数学和力学, 2018, 39(1): 11-28. doi: 10.21656/1000-0887.380139
ZHOU Yangjing, FENG Zhiqiang, PENG Lei. Application of the bi-potential integration algorithm to non-associated materials[J]. Applied Mathematics and Mechanics, 2018, 39(1): 11-28. (in Chinese) doi: 10.21656/1000-0887.380139
|
[15] |
PENG L, FENG Z Q, JOLI P, et al. Bi-potential and co-rotational formulations applied for real time simulation involving friction and large deformation[J]. Computational Mechanics, 2019, 64(3): 611-623. doi: 10.1007/s00466-019-01672-9
|
[16] |
THOMASJ R H. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis[M]. Prentice-Hall, 1987.
|
[17] |
LI Y D, LI Y, FENG Z Q. A coupled particle model with particle shifting technology for simulating transient viscoelastic fluid flow with free surface[J]. Journal of Computational Physics, 2023, 488: 112213. doi: 10.1016/j.jcp.2023.112213
|
[18] |
LIU G R. On G space theory[J]. International Journal of Computational Methods, 2009, 6(2): 257-289. doi: 10.1142/S0219876209001863
|
[19] |
LIU G R. An overview on meshfree methods: for computational solid mechanics[J]. International Journal of Computational Methods, 2016, 13(5): 1630001. doi: 10.1142/S0219876216300014
|
[20] |
LIU G R, TRUNG N T. Smoothed Finite Element Methods[M]. Boca Raton: CRC Press, 2010.
|
[21] |
LIU G R, DAI K Y, NGUYEN T T. A smoothed finite element method for mechanics problems[J]. Computational Mechanics, 2007, 39(6): 859-877. doi: 10.1007/s00466-006-0075-4
|
[22] |
LI Y, CHEN Q W, FENG Z Q. A cell-based smoothed finite element method for multi-body contact analysis within the bi-potential formulation[J]. Engineering Analysis With Boundary Elements, 2023, 148: 256-266. doi: 10.1016/j.enganabound.2022.12.023
|
[23] |
CHEN Q W, LI Y, FENG Z Q, et al. Contact analysis within the bi-potential framework using cell-based smoothed finite element method[J]. International Journal of Computational Methods, 2021, 19(6): 2141004.
|
[24] |
YUE J, LIU G R, LI M, et al. A cell-based smoothed finite element method for multi-body contact analysis using linear complementarity formulation[J]. International Journal of Solids and Structures, 2018, 141: 110-126.
|
[25] |
TAMMA K K, NAMBURU R R. A robust self-starting explicit computational methodology for structural dynamic applications: architecture and representations[J]. International Journal for Numerical Methods in Engineering, 2010, 29(7): 1441-1454.
|
[26] |
MOREAU J J. Quadratic programming in mechanics: dynamics of one-sided constraints[M]. SIAM Journal on Control and Optimization, 1966, 4(1): 153-158. doi: 10.1137/0304014
|
[27] |
DE SAXCÉ G, FENG Z Q. The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms[J]. Mathematical and Computer Modelling, 1998, 28(4/8): 225-245.
|
[28] |
GAO Y, STRANG G. Dual extremum principles in finite deformation elastoplastic analysis[J]. Acta Applicandae Mathematicae, 1989, 17: 257-267. doi: 10.1007/BF00047073
|
[29] |
BLATZ P J, KO W L. Application of finite elastic theory to the deformation of rubbery materials[J]. Transactions of the Society of Rheology, 1962, 6(1): 223-252. doi: 10.1122/1.548937
|