Volume 45 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
FAN Yajie, LI Yan, LI Zhongpan, CHEN Huijian, FENG Zhiqiang. Smoothed Finite Element Analysis of Contact and Large Deformation Problems[J]. Applied Mathematics and Mechanics, 2024, 45(2): 127-143. doi: 10.21656/1000-0887.440251
Citation: FAN Yajie, LI Yan, LI Zhongpan, CHEN Huijian, FENG Zhiqiang. Smoothed Finite Element Analysis of Contact and Large Deformation Problems[J]. Applied Mathematics and Mechanics, 2024, 45(2): 127-143. doi: 10.21656/1000-0887.440251

Smoothed Finite Element Analysis of Contact and Large Deformation Problems

doi: 10.21656/1000-0887.440251
  • Received Date: 2023-08-17
  • Rev Recd Date: 2023-11-29
  • Publish Date: 2024-02-01
  • Rubber material is widely used in practical engineering due to its good seismic and energy absorption effect. However, the collision of hyperelastic materials is a strong nonlinear problem. It is of great significance to analyze the contact collision and large deformation of hyperelastic materials to improve the buffering performance of the device. The smoothed finite element method (S-FEM) is a weak form of numerical calculation method. Compared with the traditional finite element method, the smoothed finite element method has low requirements on the mesh quality, allows the element to undergo large deformation during the calculation process, where the construction of the smooth domain is more flexible. The S-FEM has high accuracy without additional degrees of freedom. Based on the S-FEM, the double potential method was applied to contact calculation, with both advantages of the S-FEM in calculating large deformation problems and advantages of the double potential method in solving contact force fully used. In comparison with the numerical results of finite element software MSC. Marc, the results of the proposed algorithm were verified with high accuracy and good energy conservation, and the effects of the friction coefficient on the collision body were analyzed.
  • (Contributed by FENG Zhiqiang, M. AMM Editorial Board)
  • loading
  • [1]
    YASKEVICH A. Real time math simulation of contact interaction during spacecraft docking and berthing[J]. Journal of Mechanics Engineering and Automation, 2014, 4: 1-15.
    [2]
    HUGHES P C. Spacecraft Attitude Dynamics[M]. Courier Corporation, 2012.
    [3]
    SUN Y, ZHAI W M, GUO Y. A robust non-Hertzian contact method for wheel-rail normal contact analysis[J]. Vehicle System Dynamics, 2018, 56(10/12): 1899-1921.
    [4]
    BROGLIATO B. Nonsmooth Mechanics: Models, Dynamics and Control[M]. Springer, 2016.
    [5]
    ZHANG J, WANG Q. Modeling and simulation of a frictional translational joint with a flexible slider and clearance[J]. Multibody System Dynamics, 2016, 38(4): 367-389. doi: 10.1007/s11044-015-9474-7
    [6]
    聂攀. SMA弹簧-摩擦支座在网壳结构隔震控制中的参数分析[D]. 北京: 北京建筑大学, 2016.

    NIE Pan. Parametric analysis of SMA spring-friction bearings in the seismic control of mesh-shell structures[D]. Beijing: Beijing University of Architecture, 2016. (in Chinese)
    [7]
    杨静, 潘文, 苏何先, 等. 天然橡胶支座大变形压剪性能的双非线性超弹性理论和实验研究[J]. 工程力学, 2022, 39(8): 200-222. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202208022.htm

    YANG Jing, PAN Wen, SU Hexian, et al. Double nonlinear hyperelastic theory and experimental research on the large deformation of natural rubber bearing in compression and shear[J]. Engineering Mechanics, 2022, 39(8): 200-222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202208022.htm
    [8]
    郑伟, 闫立志, 张泽云, 等. 动车组车钩缓冲装置橡胶缓冲器失效机理分析及优化[J]. 城市轨道交通研究, 2022, 25(6): 171-175. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202206034.htm

    ZHENG Wei, YAN Lizhi, ZHANG Zeyun, et al. Failure mechanism analysis and performance optimization of rubber draft gear of coupler buffer in EMU[J]. Urban Mass Transit, 2022, 25(6): 171-175. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202206034.htm
    [9]
    罗操群, 孙加亮, 文浩, 等多刚体系统分离策略及释放动力学研究[J]. 力学学报, 2020, 52(2): 503-513. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202002019.htm

    LUO Caoqun, SUN Jialiang, WEN Hao, et al. Research on separation strategy and deployment dynamics of a space multi-rigid-body system[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 503-513. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202002019.htm
    [10]
    BELYTSCHKO T, NEAL M O. Contact-impact by the pinball algorithm with penalty and Lagrangian methods[J]. International Journal for Numerical Methods in Engineering, 2010, 31(3): 547-572.
    [11]
    FRANCAVILLA A, ZIENKIEWICZ O C. A note on numerical computation of elastic contact problems[J]. International Journal for Numerical Methods in Engineering, 2010, 9(4): 913-924.
    [12]
    DE SAXCÉ G, FENG Z Q. New inequality and functional for contact with friction: the implicit standard material approach[J]. Mechanics of Structures and Machines, 1991, 19(3): 301-325. doi: 10.1080/08905459108905146
    [13]
    FENG Z Q, JOLI P, CROS J M, et al. The bi-potential method applied to the modeling of dynamic problems with friction[J]. Computational Mechanics, 2005, 36(5): 375-383. doi: 10.1007/s00466-005-0663-8
    [14]
    周洋靖, 冯志强, 彭磊. 双势积分算法在非关联材料中的应用[J]. 应用数学和力学, 2018, 39(1): 11-28. doi: 10.21656/1000-0887.380139

    ZHOU Yangjing, FENG Zhiqiang, PENG Lei. Application of the bi-potential integration algorithm to non-associated materials[J]. Applied Mathematics and Mechanics, 2018, 39(1): 11-28. (in Chinese) doi: 10.21656/1000-0887.380139
    [15]
    PENG L, FENG Z Q, JOLI P, et al. Bi-potential and co-rotational formulations applied for real time simulation involving friction and large deformation[J]. Computational Mechanics, 2019, 64(3): 611-623. doi: 10.1007/s00466-019-01672-9
    [16]
    THOMASJ R H. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis[M]. Prentice-Hall, 1987.
    [17]
    LI Y D, LI Y, FENG Z Q. A coupled particle model with particle shifting technology for simulating transient viscoelastic fluid flow with free surface[J]. Journal of Computational Physics, 2023, 488: 112213. doi: 10.1016/j.jcp.2023.112213
    [18]
    LIU G R. On G space theory[J]. International Journal of Computational Methods, 2009, 6(2): 257-289. doi: 10.1142/S0219876209001863
    [19]
    LIU G R. An overview on meshfree methods: for computational solid mechanics[J]. International Journal of Computational Methods, 2016, 13(5): 1630001. doi: 10.1142/S0219876216300014
    [20]
    LIU G R, TRUNG N T. Smoothed Finite Element Methods[M]. Boca Raton: CRC Press, 2010.
    [21]
    LIU G R, DAI K Y, NGUYEN T T. A smoothed finite element method for mechanics problems[J]. Computational Mechanics, 2007, 39(6): 859-877. doi: 10.1007/s00466-006-0075-4
    [22]
    LI Y, CHEN Q W, FENG Z Q. A cell-based smoothed finite element method for multi-body contact analysis within the bi-potential formulation[J]. Engineering Analysis With Boundary Elements, 2023, 148: 256-266. doi: 10.1016/j.enganabound.2022.12.023
    [23]
    CHEN Q W, LI Y, FENG Z Q, et al. Contact analysis within the bi-potential framework using cell-based smoothed finite element method[J]. International Journal of Computational Methods, 2021, 19(6): 2141004.
    [24]
    YUE J, LIU G R, LI M, et al. A cell-based smoothed finite element method for multi-body contact analysis using linear complementarity formulation[J]. International Journal of Solids and Structures, 2018, 141: 110-126.
    [25]
    TAMMA K K, NAMBURU R R. A robust self-starting explicit computational methodology for structural dynamic applications: architecture and representations[J]. International Journal for Numerical Methods in Engineering, 2010, 29(7): 1441-1454.
    [26]
    MOREAU J J. Quadratic programming in mechanics: dynamics of one-sided constraints[M]. SIAM Journal on Control and Optimization, 1966, 4(1): 153-158. doi: 10.1137/0304014
    [27]
    DE SAXCÉ G, FENG Z Q. The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms[J]. Mathematical and Computer Modelling, 1998, 28(4/8): 225-245.
    [28]
    GAO Y, STRANG G. Dual extremum principles in finite deformation elastoplastic analysis[J]. Acta Applicandae Mathematicae, 1989, 17: 257-267. doi: 10.1007/BF00047073
    [29]
    BLATZ P J, KO W L. Application of finite elastic theory to the deformation of rubbery materials[J]. Transactions of the Society of Rheology, 1962, 6(1): 223-252. doi: 10.1122/1.548937
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(2)

    Article Metrics

    Article views (461) PDF downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return