Citation: | ZHANG Guangjiang, YANG Deze, CHU Xihua. Study on Constitutive Relations and Boundary Value Problems of Granular Materials Based on Artificial Neural Networks[J]. Applied Mathematics and Mechanics, 2024, 45(2): 155-166. doi: 10.21656/1000-0887.440248 |
[1] |
CUNDALL P A. The measurement and analysis of accelerations in rock slopes[D]. London: University of London, 1971.
|
[2] |
CUNDALL P A, STRACK O D. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47
|
[3] |
李典哲, 刘璐, 季顺迎. 基于扩展多面体组合单元的非规则颗粒材料离散元方法[J]. 应用数学与力学, 2023, 44(7): 769-783. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX202307002.htm
LI Dianzhe, LIU Lu, JI Shunying. A discrete element method for irregular granular materials based on multi-dilated polyhedron elements[J]. Applied Mathematics and Mechanics, 2023, 44(7): 769-783. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX202307002.htm
|
[4] |
XIU C, CHU X. A micromechanics-based gradient model and the effect of high-order stress and particle rolling on localizations for granular materials[J]. Granular Matter, 2017, 19: 1-21. doi: 10.1007/s10035-016-0682-5
|
[5] |
CHU X, YU C, XIU C, et al. Two scale modeling of behaviors of granular structure: size effects and displacement fluctuations of discrete particle assembly[J]. Structural Engineering and Mechanics, 2015, 55(2): 315-334. doi: 10.12989/sem.2015.55.2.315
|
[6] |
JANSSEN H. Tests on grain pressure silos[J]. Zeitschrift des Vereines Deutscher Ingenieure, 1895, 39(35): 1045.
|
[7] |
ROBERTS I I. Determination of the vertical and lateral pressures of granular substances[J]. Proceedings of the Royal Society of London, 1883, 36(228/231): 225-240.
|
[8] |
HONG D C, QUINN P V, LUDING S. Reverse Brazil nut problem: competition between percolation and condensation[J]. Physical Review Letters, 2001, 86(15): 3423. doi: 10.1103/PhysRevLett.86.3423
|
[9] |
LUDING S, CLÉMENT E, RAJCHENBACH J, et al. Simulations of pattern formation in vibrated granular media[J]. Europhysics Letters, 1996, 36(4): 247. doi: 10.1209/epl/i1996-00217-9
|
[10] |
VANEL L, CLAUDIN P, BOUCHAUD J P, et al. Stresses in silos: comparison between theoretical models and new experiments[J]. Physical Review Letters, 2000, 84(7): 1439. doi: 10.1103/PhysRevLett.84.1439
|
[11] |
刘嘉, 冯德銮. 考虑土颗粒微细观运动的多尺度耦合有限元分析方法[J]. 岩土力学, 2021, 42(4): 1186-1199. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104032.htm
LIU Jia, FENG Deluan. A multi-scale coupling finite element method based on the microscopic soil particle motions[J]. Rock and Soil Mechanics, 2021, 42(4): 1186-1199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104032.htm
|
[12] |
MUNJIZA A. The Combined Finite-Discrete Element Method[M]. Chichester: John Wiley & Sons, 2004.
|
[13] |
MUNJIZA A, OWEN D, BICANIC N. A combined finite-discrete element method in transient dynamics of fracturing solids[J]. Engineering Computations, 1995, 12(2): 145-174. doi: 10.1108/02644409510799532
|
[14] |
MASI F, STEFANOU I, VANNUCCI P, et al. Thermodynamics-based artificial neural networks for constitutive modeling[J]. Journal of the Mechanics and Physics of Solids, 2021, 147: 104277. doi: 10.1016/j.jmps.2020.104277
|
[15] |
BENVENUTI L, KLOSS C, PIRKER S. Identification of DEM simulation parameters by artificial neural networks and bulk experiments[J]. Powder Technology, 2016, 291: 456-465. doi: 10.1016/j.powtec.2016.01.003
|
[16] |
ZHANG P, YIN Z Y, JIN Y F, et al. An AI-based model for describing cyclic characteristics of granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(9): 1315-1335. doi: 10.1002/nag.3063
|
[17] |
WANG M, QU T, GUAN S, et al. Data-driven strain-stress modelling of granular materials via temporal convolution neural network[J]. Computers and Geotechnics, 2022, 152: 105049. doi: 10.1016/j.compgeo.2022.105049
|
[18] |
QU T, DI S, FENG Y, et al. Towards data-driven constitutive modelling for granular materials via micromechanics-informed deep learning[J]. International Journal of Plasticity, 2021, 144: 103046. doi: 10.1016/j.ijplas.2021.103046
|
[19] |
KOHONEN T. An introduction to neural computing[J]. Neural Networks, 1988, 1(1): 3-16. doi: 10.1016/0893-6080(88)90020-2
|
[20] |
瞿同明, 冯云田, 王孟琦, 等. 基于深度学习和细观力学的颗粒材料本构关系研究[J]. 力学学报, 2021, 53(9): 2404-2415. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202109006.htm
QU Tongming, FENG Yuntian, WANG Mengqi, et al. Constitutive relations of granular materials by integrating micromechanical knowledge with deep learning[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2404-2415. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202109006.htm
|
[21] |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
ZHOU Zhihua. Machine Learning[M]. Beijing: Tsinghua University Press, 2016. (in Chinese)
|
[22] |
GUAN S, QU T, FENG Y, et al. A machine learning-based multi-scale computational framework for granular materials[J]. Acta Geotechnica, 2023, 18: 1699-1720. doi: 10.1007/s11440-022-01709-z
|