Citation: | LI Shuguang, QU Kai. Homogenization Modeling of Single-Phase Gas Local Flow in Porous Media[J]. Applied Mathematics and Mechanics, 2024, 45(2): 175-183. doi: 10.21656/1000-0887.440246 |
[1] |
BEAR J. Modeling Phenomena of Flow and Transport in Porous Media[M]. Springer, 2018.
|
[2] |
姜海龙, 朱培旺, 徐东华. 考虑气体加速效应的高压气井产能方程推导及其应用[J]. 应用数学和力学, 2020, 41(2): 134-142. doi: 10.21656/1000-0887.400030
JIANG Hailong, ZHU Peiwang, XU Donghua. Derivation and application of productivity equations for high-pressure gas reservoirs with gas acceleration effects[J]. Applied Mathematics and Mechanics, 2020, 41(2): 134-142. (in Chinese) doi: 10.21656/1000-0887.400030
|
[3] |
孔祥言. 高等渗流力学[M]. 3版. 合肥: 中国科学技术大学出版社, 2020.
KONG Xiangyan. Advanced Mechanics of Fluids in Porous Media[M]. 3rd ed. Hefei: University of Science and Technology of China Press, 2020. (in Chinese)
|
[4] |
AURIAULT J L, BOUTIN C, GEINDREAU C. Homogenization of Coupled Phenomena in Heterogenous Media[M]. John Wiley, 2009.
|
[5] |
BLUNT M J, JACKSON M D, PIRI M. Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow[J]. Advances in Water Resources, 2002, 25(8/12): 1069-1089.
|
[6] |
朱帅润, 李绍红, 钟彩尹, 等. 时间分数阶的非饱和渗流数值分析及其应用[J]. 应用数学和力学, 2022, 43(9): 966-975. doi: 10.21656/1000-0887.420334
ZHU Shuairun, LI Shaohong, ZHONG Caiyin, et al. Numerical analysis of time fractional-order unsaturated flow and its application[J]. Applied Mathematics and Mechanics, 2022, 43(9): 966-975. (in Chinese) doi: 10.21656/1000-0887.420334
|
[7] |
BAKHVALOV N S, PANASENKO G. Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials[M]. Springer, 2012.
|
[8] |
DIMITRIENKO Y I. Thermomechanics of Composites Under High Temperatures[M]. Springer, 2016.
|
[9] |
CAI Y, XU L, CHENG G D. Novel numerical implementation of asymptotic homogenization method for periodic plate structures[J]. International Journal of Solids and Structures, 2014, 51(1): 284-292. doi: 10.1016/j.ijsolstr.2013.10.003
|
[10] |
李鸿鹏, 凌松, 戚振彪, 等. 热力耦合问题数学均匀化方法的计算精度[J]. 应用数学和力学, 2020, 41(1): 54-69. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX202001005.htm
LI Hongpeng, LING Song, QI Zhenbiao, et al. Accuracy of the mathematical homogenization method for thermomechanical problems[J]. Applied Mathematics and Mechanics, 2020, 41(1): 54-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX202001005.htm
|
[11] |
LI S G, DIMITRIENKO Y I. Mathematical modeling for the local flow of a generalized Newtonian fluid in 3D porous media[J]. Applied Mathematical Modelling, 2022, 105: 551-565. doi: 10.1016/j.apm.2022.01.003
|
[12] |
DIMITRIENKO Y I, DIMITRIENKO I D. Simulation of local transfer in periodic porous media[J]. European Journal of Mechanics B: Fluids, 2013, 37: 174-179. doi: 10.1016/j.euromechflu.2012.09.006
|
[13] |
WANG J G, LEUNG C F, CHOU Y K. Numerical solutions for flow in porous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27(7): 565-583 doi: 10.1002/nag.286
|
[14] |
XU W, FISH J. A multiscale modeling of permeability in a multi-porosity porous medium using smoothed particle hydrodynamics[J]. International Journal for Numerical Methods in Engineering, 2017, 111(8): 776-800. doi: 10.1002/nme.5494
|
[15] |
CAI Z, LEE B, WANG P. Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems[J]. SIAM Journal on Numerical Analysis, 2004, 42(2): 843-859. doi: 10.1137/S0036142903422673
|
[16] |
LI S G, DIMITRIENKO Y I. Least squares finite element simulation of local transfer for a generalized Newtonian fluid in 2D periodic porous media[J]. Journal of Non-Newtonian Fluid Mechanics, 2023, 316: 105032. doi: 10.1016/j.jnnfm.2023.105032
|
[17] |
PAYETTE G S, REDDY J N. On the roles of minimization and linearization in least squares finite element models of nonlinear boundary-value problems[J]. Journal of Computational Physics, 2011, 230(9): 3589-3613. doi: 10.1016/j.jcp.2011.02.002
|
[18] |
吴望一. 流体力学[M]. 2版. 北京: 北京大学出版社, 2021.
WU Wangyi. Fluid Mechanics[M]. 2nd ed. Beijing: Peking University Press, 2021. (in Chinese)
|