Volume 44 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
LI Shixuan, LIU Lihan. Transmission Eigenvalues for Helmholtz Equation Perturbation Problems of Isotropic Media With Voids[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1389-1397. doi: 10.21656/1000-0887.440221
Citation: LI Shixuan, LIU Lihan. Transmission Eigenvalues for Helmholtz Equation Perturbation Problems of Isotropic Media With Voids[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1389-1397. doi: 10.21656/1000-0887.440221

Transmission Eigenvalues for Helmholtz Equation Perturbation Problems of Isotropic Media With Voids

doi: 10.21656/1000-0887.440221
  • Received Date: 2023-07-18
  • Rev Recd Date: 2023-09-05
  • Publish Date: 2023-11-01
  • Transmission eigenvalues are of major interests in the inverse scattering theory for uniqueness. For the Helmholtz equation of isotropic inhomogeneous media with voids, the existence of transmission eigenvalues was studied for the Helmholtz equation under the refractive index perturbation of the media. Firstly, through construction of the Neumann-Dirichlet operator, the equivalent form of the transmission eigenvalue problem was obtained. Then, the eigenvalue function was built to transform the perturbation problem for transmission eigenvalues into the perturbation problem for zero eigenvalues of operators. Finally, the perturbation method based on the implicit function theorem was used to prove the existence of transmission eigenvalues.
  • loading
  • [1]
    CAKONI F, COLTON D, HADDAR H. On the determination of Dirichlet or transmission eigenvalues from far field data[J]. Comptes Rendus Mathematique, 2010, 348(7/8): 379-383.
    [2]
    COLTON D L, KRESS R. Inverse Acoustic and Electromagnetic Scattering Theory[M]. Berlin: Springer, 1998.
    [3]
    CAKONI F, GINTIDES D, HADDAR H. The existence of an infinite discrete set of transmission eigenvalues[J]. SIAM Journal on Mathematical Analysis, 2010, 42(1): 237-255. doi: 10.1137/090769338
    [4]
    SYLVESTER J. Discreteness of transmission eigenvalues via upper triangular compact operators[J]. SIAM Journal on Mathematical Analysis, 2012, 44(1): 341-354. doi: 10.1137/110836420
    [5]
    COLTON D, PAIVARINTA L, SYLVESTER J. The interior transmission problem[J]. Inverse Problems and Imaging, 2007, 1(1): 13-28. doi: 10.3934/ipi.2007.1.13
    [6]
    COLTON D, LEUNG Y J. Complex eigenvalues and the inverse spectral problem for transmission eigenvalues[J]. Inverse Problems, 2013, 29(10): 104008. doi: 10.1088/0266-5611/29/10/104008
    [7]
    ROBBIANO L. Spectral analysis of the interior transmission eigenvalue problem[J]. Inverse Problems, 2013, 29(10): 104001. doi: 10.1088/0266-5611/29/10/104001
    [8]
    NGUYEN H M, NGUYEN Q H. The Weyl law of transmission eigenvalues and the completeness of generalized transmission eigenfunctions[J]. Journal of Functional Analysis, 2021, 281(8): 109146. doi: 10.1016/j.jfa.2021.109146
    [9]
    陈林冲, 李小林. 二维Helmholtz方程的插值型边界无单元法[J]. 应用数学和力学, 2018, 39(4): 470-484. doi: 10.21656/1000-0887.380202

    CHEN Linchong, LI Xiaolin. An interpolating boundary element-free method for 2D Helmholtz equations[J]. Applied Mathematics and Mechanics, 2018, 39(4): 470-484. (in Chinese) doi: 10.21656/1000-0887.380202
    [10]
    戴海, 潘文峰. 谱元法求解Helmholtz方程透射特征值问题[J]. 应用数学和力学, 2018, 39(7): 833-840. doi: 10.21656/1000-0887.380327

    DAI Hai, PAN Wenfeng. A spectral element method for transmission eigenvalue problems of the Helmholtz equation[J]. Applied Mathematics and Mechanics, 2018, 39(7): 833-840. (in Chinese) doi: 10.21656/1000-0887.380327
    [11]
    PÄIVÄRINTA L, SYLVESTER J. Transmission eigenvalues[J]. SIAM Journal on Mathematical Analysis, 2008, 40(2): 738-753. doi: 10.1137/070697525
    [12]
    CAKONI F, HADDAR H. On the existence of transmission eigenvalues in an inhomogeneous medium[J]. Applicable Analysis, 2009, 88(4): 475-493. doi: 10.1080/00036810802713966
    [13]
    SYLVESTER J. Discreteness of transmission eigenvalues via upper triangular compact operators[J]. SIAM Journal on Mathematical Analysis, 2012, 44(1): 341-354. doi: 10.1137/110836420
    [14]
    CAKONI F, COLTON D, HADDAR H. The interior transmission problem for regions with cavities[J]. SIAM Journal on Mathematical Analysis, 2010, 42(1): 145-162. doi: 10.1137/090754637
    [15]
    COSSONNIÈRE A, HADDAR H. The electromagnetic interior transmission problem for regions with cavities[J]. SIAM Journal on Mathematical Analysis, 2011, 43(4): 1698-1715. doi: 10.1137/100813890
    [16]
    COLTON D, LEUNG Y J, MENG S. Distribution of complex transmission eigenvalues for spherically stratified media[J]. Inverse Problems, 2015, 31(3): 035006. doi: 10.1088/0266-5611/31/3/035006
    [17]
    COLTON D, LEUNG Y J. The existence of complex transmission eigenvalues for spherically stratified media[J]. Applicable Analysis, 2017, 96(1): 39-47. doi: 10.1080/00036811.2016.1210788
    [18]
    AMBROSE D M, CAKONI F, MOSKOW S. A perturbation problem for transmission eigenvalues[J]. Research in the Mathematical Sciences, 2022, 9(1): 1-16. doi: 10.1007/s40687-021-00298-9
    [19]
    CAKONI F, COLTON D, HADDAR H. Inverse Scattering Theory and Transmission Eigenvalues[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2016.
    [20]
    RYNNE B P, SLEEMAN B D. The interior transmission problem and inverse scattering from inhomogeneous media[J]. SIAM Journal on Mathematical Analysis, 1991, 22(6): 1755-1762. doi: 10.1137/0522109
    [21]
    HURWICZ L, RICHTER M K. Implicit functions and diffeomorphisms without C1[J]. Advances in Mathematical Economics, 2003, 5: 65-96.
    [22]
    RELLICH F. Perturbation Theory of Eigenvalue Problems[M]. New York: Gordon and Breach Science Publishers, 1969.
    [23]
    KATO T. Perturbation Theory for Linear Operators[M]. Berlin: Springer, 2013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (385) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return