Citation: | HE Shu, LOU Qin. Simulation Study of Porosity Effects of Porous Media on Pool Boiling Heat Transfer Performances[J]. Applied Mathematics and Mechanics, 2024, 45(3): 348-364. doi: 10.21656/1000-0887.440212 |
[1] |
DEDOV A V, KHAZIEV I A, LAHAREV D A, et al. Study of nucleate pool boiling heat transfer enhancement on surfaces modified by beam technologies[J]. Heat Transfer Engineering, 2022, 43(7): 598-607. doi: 10.1080/01457632.2021.1896834
|
[2] |
李迎雪, 王浩原, 娄钦. 含多个矩形加热器通道内流动沸腾传热性能的介观数值方法研究[J]. 应用数学和力学, 2022, 43(7): 727-739. doi: 10.21656/1000-0887.420325
LI Yingxue, WANG Haoyuan, LOU Qin. Mesoscopic numerical study on flow boiling heat transfer performance in channels with multiple rectangular heaters[J]. Applied Mathematics and Mechanics, 2022, 43(7): 727-739. (in Chinese) doi: 10.21656/1000-0887.420325
|
[3] |
YANG Z, YAO Y, WU H. Effects of surfactants on subcooled pool boiling characteristics: an experimental study[J]. International Journal of Heat and Mass Transfer, 2022, 199: 123419. doi: 10.1016/j.ijheatmasstransfer.2022.123419
|
[4] |
ZONOUZI S A, AMINFAR H, MOHAMMADPOURFARD M. A review on effects of magnetic fields and electric fields on boiling heat transfer and CHF[J]. Applied Thermal Engineering, 2019, 151: 11-25. doi: 10.1016/j.applthermaleng.2019.01.099
|
[5] |
ALIZADEH R, GOMARI S R, ALIZADEH A, et al. Combined heat and mass transfer and thermodynamic irreversibilities in the stagnation-point flow of Casson rheological fluid over a cylinder with catalytic reactions and inside a porous medium under local thermal nonequilibrium[J]. Computers and Mathematics With Applications, 2021, 81: 786-810. doi: 10.1016/j.camwa.2019.10.021
|
[6] |
DEHGHAN M, VALIPOUR M S, KESHMIRI A, et al. On the thermally developing forced convection through a porous material under the local thermal non-equilibrium condition: an analytical study[J]. International Journal of Heat and Mass Transfer, 2016, 92: 815-823. doi: 10.1016/j.ijheatmasstransfer.2015.08.091
|
[7] |
EL-GENK M S, PARKER J L. Enhanced boiling of HFE-7100 dielectric liquid on porous graphite[J]. Energy Conversion and Management, 2005, 46(15/16): 2455-2481.
|
[8] |
CHI Y L, BHUIYA M, KIM K J. Pool boiling heat transfer with nano-porous surface[J]. International Journal of Heat and Mass Transfer, 2010, 53(19/20): 4274-4279.
|
[9] |
BERGLES A E, CHYU M C. Characteristics of nucleate pool boiling from porous metallic coatings[J]. ASME Journal of Heat and Mass Transfer, 1982, 104(2): 279-285. doi: 10.1115/1.3245084
|
[10] |
YANG Y, JI X, XU J. Pool boiling heat transfer on copper foam covers with water as working fluid[J]. International Journal of Thermal Sciences, 2010, 49(7): 1227-1237. doi: 10.1016/j.ijthermalsci.2010.01.013
|
[11] |
LI C, WANG Z, WANG P I, et al. Nanostructured copper interfaces for enhanced boiling[J]. Small, 2008, 4(8): 1084-1088. doi: 10.1002/smll.200700991
|
[12] |
ZHANG B J, KIM K J, YOON H. Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling[J]. International Journal of Heat and Mass Transfer, 2012, 55(25/26): 7487-7498.
|
[13] |
ZHANG B J, PARK J, KIM K J. Augmented boiling heat transfer on the wetting-modified three dimensionally-interconnected alumina nano porous surfaces in aqueous polymeric surfactants[J]. International Journal of Heat and Mass Transfer, 2013, 63: 224-232. doi: 10.1016/j.ijheatmasstransfer.2013.03.064
|
[14] |
MORI S, OKUYAMA K. Enhancement of the critical heat flux in saturated pool boiling using honeycomb porous media[J]. International Journal of Multiphase Flow, 2009, 35(10): 946-951. doi: 10.1016/j.ijmultiphaseflow.2009.05.003
|
[15] |
YUKI K, HARA T, IKEZAWA S, et al. Immersion cooling of electronics utilizing lotus-type porous copper[J]. Transactions of the Japan Institute of Electronics Packaging, 2016, 9: E16-013.
|
[16] |
JI X, XU J, ZHAO Z, et al. Pool boiling heat transfer on uniform and non-uniform porous coating surfaces[J]. Experimental Thermal and Fluid Science, 2013, 48: 198-212. doi: 10.1016/j.expthermflusci.2013.03.002
|
[17] |
AN Y, HUANG C, WANG X. Effects of thermal conductivity and wettability of porous materials on the boiling heat transfer[J]. International Journal of Thermal Sciences, 2021, 170: 107-110.
|
[18] |
LI H Y, LEONG K C. Experimental and numerical study of single and two-phase flow and heat transfer in aluminum foams[J]. International Journal of Heat and Mass Transfer, 2011, 54(23/24): 4904-4912.
|
[19] |
PERALTA M, MENDEZ F, BAUTISTA O. Phase-change transpiration cooling in a porous medium: determination of the liquid/two-phase/vapor interfaces as a problem of eigenvalues[J]. Transport in Porous Media, 2016, 112(1): 167-187. doi: 10.1007/s11242-016-0637-7
|
[20] |
SHAN X, CHEN H. Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Physical Review E, 1993, 47(3): 1815-1819. doi: 10.1103/PhysRevE.47.1815
|
[21] |
CHEN L, KANG Q, MU Y, et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications[J]. International Journal of Heat and Mass Transfer, 2014, 76: 210-236. doi: 10.1016/j.ijheatmasstransfer.2014.04.032
|
[22] |
GONG S, CHENG P. Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling[J]. International Journal of Heat and Mass Transfer, 2013, 64: 122-132. doi: 10.1016/j.ijheatmasstransfer.2013.03.058
|
[23] |
LI Q, ZHOU P, YAN H J. Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change[J]. Physical Review E, 2017, 96(6): 063303. doi: 10.1103/PhysRevE.96.063303
|
[24] |
LOU A Q, WANG H, LI L. A lattice Boltzmann investigation of the saturated pool boiling heat transfer on micro-cavity/fin surfaces[J]. Physics of Fluids, 2023, 35(1): 013316. doi: 10.1063/5.0134043
|
[25] |
陆威, 王婷婷, 徐洪涛, 等. 多孔介质复合方腔双扩散混合对流LBM模拟[J]. 应用数学和力学, 2017, 38(7): 780-793. doi: 10.21656/1000-0887.370175
LU Wei, WANG Tingting, XU Hongtao, et al. LBM simulation of double diffusive mixed convection in a porous medium composite cavity[J]. Applied Mathematics and Mechanics, 2017, 38(7): 780-793. (in Chinese) doi: 10.21656/1000-0887.370175
|
[26] |
MONDAL K, BHATTACHARYA A. Bubble dynamics and enhancement of pool boiling in presence of an idealized porous medium: a numerical study using lattice Boltzmann method[J]. Journal of Thermal Science and Engineering Applications, 2022, 14(8): 081004. doi: 10.1115/1.4053054
|
[27] |
SHI J, FENG D, CHEN Z, et al. Numerical study of a hybrid thermal lattice Boltzmann method for pool boiling heat transfer on a modeled hydrophilic metal foam surface[J]. Applied Thermal Engineering, 2023, 229: 120535. doi: 10.1016/j.applthermaleng.2023.120535
|
[28] |
QIN J, XU Z, MA X. Pore-scale simulation on pool boiling eat transfer and bubble dynamics in open-cell metalfoam by lattice Boltzmann method[J]. Journal of Heat Transfer, 2021, 143(1): 011602. doi: 10.1115/1.4048734
|
[29] |
GONG S, CHENG P. A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer[J]. International Journal of Heat and Mass Transfer, 2012, 55(17/18): 4923-4927.
|
[30] |
YUAN P, SCHAEFER L. Equations of state in a lattice Boltzmann model[J]. Physics of Fluids, 2006, 18(4): 042101. doi: 10.1063/1.2187070
|
[31] |
LI L, CHEN C, MEI R, et al. Conjugate heat and mass transfer in the lattice Boltzmann equation method[J]. Physical Review E, 2014, 89(4): 043308. doi: 10.1103/PhysRevE.89.043308
|
[32] |
HU Z, WANG D, XU J, et al. Development of a loop heat pipe with the 3D printed stainless steel wick in the application of thermal management[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120258. doi: 10.1016/j.ijheatmasstransfer.2020.120258
|
[33] |
PAVLENKO A N, KUZNETSOV D V, BESSMELTSEV V P. Experimental study on heat transfer and critical heat flux during pool boiling of nitrogen on 3D printed structured copper capillary-porous coatings[J]. Journal of Engineering Thermophysics, 2021, 30: 341-349. doi: 10.1134/S1810232821030012
|
[34] |
胡卓焕, 罗婷, 许佳寅, 等. 毛细芯蒸汽槽道孔径对环路热管(LHP)传热性能影响研究[J]. 热能动力工程, 2022, 37(5): 86-92. https://www.cnki.com.cn/Article/CJFDTOTAL-RNWS202205012.htm
HU Zhuohuan, LUO Ting, XU Jiayin, et al. Research on effect of various wick steam groove structures on heat transfer performance of loop heat pipe[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(5): 86-92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RNWS202205012.htm
|
[35] |
LOU Q, GUO Z, SHI B. Evaluation of outflow boundary conditions for two-phase lattice Boltzmann equation[J]. Physical Review E, 2013, 87(6): 063301. doi: 10.1103/PhysRevE.87.063301
|
[36] |
LIU Z, QIN J, WU Z, et al. Numerical investigation on pool boiling mechanism of hybrid structures with metal foam and square column by LBM[J]. Journal of Thermal Science, 2022, 31(6): 2293-2308. doi: 10.1007/s11630-022-1711-9
|
[37] |
KANDLIKAR S G. Scale effects on flow boiling heat transfer in microchannels: a fundamental perspective[J]. International Journal of Thermal Sciences, 2010, 49(7): 1073-1085. doi: 10.1016/j.ijthermalsci.2009.12.016
|
[38] |
HUANG R L, ZHAO C Y, XU Z G. Investigation of bubble behavior in gradient porous media under pool boiling conditions[J]. International Journal of Multiphase Flow, 2018, 103: 85-93. doi: 10.1016/j.ijmultiphaseflow.2018.02.005
|
[39] |
COLOMBO M, FAIRWEATHER M. Prediction of bubble departure in forced convection boiling: a mechanistic model[J]. International Journal of Heat and Mass Transfer, 2015, 85(1): 135-146.
|
[40] |
ZHANG H W, WANG K P, Chen Z. Material point method for dynamic analysis of saturated porous media under external contact/impact of solid bodies[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(17/20): 1456-1472.
|
[41] |
SHEN L, SCHMITT D R. Hydro-mechanical modelling of fault movement in response to subsurface fluid injection, a finite element approach[C]//GeoConvention 2016: Optimizing Resources. 2016.
|
[42] |
KARAKASHEV S I, STOCKELHUBER K W, TSEKOV R, et al. Bubble rubbing on hydrophobic solid surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555: 638-645. doi: 10.1016/j.colsurfa.2018.07.037
|
[43] |
VEMURI S, KIM K J. Pool boiling of saturated FC-72 on nano-porous surface[J]. International Communications in Heat and Mass Transfer, 2005, 32(1/2): 27-31.
|
[44] |
XU Z G, QU Z G, ZHAO C Y, et al. Experimental correlation for pool boiling heat transfer on metallic foam surface and bubble cluster growth behavior on grooved array foam surface[J]. International Journal of Heat and Mass Transfer, 2014, 77: 1169-1182. doi: 10.1016/j.ijheatmasstransfer.2014.06.037
|
[45] |
LI C, PETERSON G P, EL-GENK M S. Experimental studies on CHF of pool boiling on horizontal conductive micro porous coated surfaces[J]. American Institute of Physics, 2008, 969: 12-20.
|
[46] |
OU L W, JIANG X C, ZHANG S W, et al. Pool boiling performance of a sintered aluminum powder wick for a lightweight vapor chamber[J]. Machines, 2023, 11(4): 468. doi: 10.3390/machines11040468
|