Citation: | ZHOU Rui, ZHANG Zhijia, ZHANG Wang, ZHANG Qiancheng, WEI Xin, SUI Yaguang, WANG Jianqiang, JIN Feng. Dynamic Response and Energy Absorption Performances of Multi-Walled Tube Reinforced Aluminum Foam Structure[J]. Applied Mathematics and Mechanics, 2024, 45(1): 12-24. doi: 10.21656/1000-0887.440186 |
[1] |
AL-SAHLANI K, BROXTERMANN S, LELL D, et al. Effects of particle size on the microstructure and mechanical properties of expanded glass-metal syntactic foams[J]. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 728: 80-87. doi: 10.1016/j.msea.2018.04.103
|
[2] |
CIARDIELLO R, DRZAL L T, BELINGARDI G. Effects of carbon black and graphene nano-platelet fillers on the mechanical properties of syntactic foam[J]. Composite Structures, 2017, 178: 9-19. doi: 10.1016/j.compstruct.2017.07.057
|
[3] |
MARX J, PORTANOVA M, RABIEI A. A study on blast and fragment resistance of composite metal foams through experimental and modeling approaches[J]. Composite Structures, 2018, 194: 652-661. doi: 10.1016/j.compstruct.2018.03.075
|
[4] |
ZHOU R, CROCKER M J. Sound transmission loss of foam-filled honeycomb sandwich panels using statistical energy analysis and theoretical and measured dynamic properties[J]. Journal of Sound and Vibration, 2010, 329(6): 673-686. doi: 10.1016/j.jsv.2009.10.002
|
[5] |
ASHBY M F, EVANS A, FLECK N A, et al. Metal foams: a design guide[J]. Applied Mechanics Reviews, 2002, 23(6): 119.
|
[6] |
BANHART J. Manufacture, characterization and application of cellular metals and metal foams[J]. Progress in Materials Science, 2001, 46(6): 559-632. doi: 10.1016/S0079-6425(00)00002-5
|
[7] |
GUO Q, LI W B, YAO W J, et al. Mechanical properties and constitutive model applied to the high-speed impact of aluminum foam that considers its meso-structural parameters[J]. Materials, 2021, 14(20): 6206. doi: 10.3390/ma14206206
|
[8] |
BANHART J. Metal foams: production and stability[J]. Advanced Engineering Materials, 2006, 8(9): 781-794. doi: 10.1002/adem.200600071
|
[9] |
MOVAHEDI N, CONWAY S, BELOVA I V, et al. Influence of particle arrangement on the compression of functionally graded metal syntactic foams[J]. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764: 138242. doi: 10.1016/j.msea.2019.138242
|
[10] |
YANG K M, YANG X D, HE C N, et al. Damping characteristics of Al matrix composite foams reinforced by in-situ grown carbon nanotubes[J]. Materials Letters, 2017, 209: 68-70. doi: 10.1016/j.matlet.2017.07.126
|
[11] |
DU Y, LI A B, ZHANG X X, et al. Enhancement of the mechanical strength of aluminum foams by SiC nanoparticles[J]. Materials Letters, 2015, 148: 79-81. doi: 10.1016/j.matlet.2015.02.066
|
[12] |
BHOGI S, NAMPOOTHIRI J, RAVI K R, et al. Influence of nano and micro particles on the expansion and mechanical properties of aluminum foams[J]. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 685: 131-138. doi: 10.1016/j.msea.2016.12.127
|
[13] |
DUARTE I, VENTURA E, OLHERO S, et al. A novel approach to prepare aluminium-alloy foams reinforced by carbon-nanotubes[J]. Materials Letters, 2015, 160: 162-166. doi: 10.1016/j.matlet.2015.07.115
|
[14] |
YANG K M, YANG X D, LIU E Z, et al. Elevated temperature compressive properties and energy absorption response of in-situ grown CNT-reinforced Al composite foams[J]. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 690: 294-302. doi: 10.1016/j.msea.2017.03.004
|
[15] |
LINUL E, MARSAVINA L, LINUL P A, et al. Cryogenic and high temperature compressive properties of metal foam matrix composites[J]. Composite Structures, 2019, 209: 490-498. doi: 10.1016/j.compstruct.2018.11.006
|
[16] |
杨旭东, 许佳丽, 邹田春, 等. 泡沫铝填充金属薄壁管复合结构的研究进展[J]. 材料导报, 2019, 33(21): 111-117.
YANG Xudong, XU Jiali, ZOU Tianchun, et al. Advances in the composite structure of aluminum foam filled metal thin-walled tube[J]. Materials Reports, 2019, 33(21): 111-117. (in Chinese)
|
[17] |
YAN L L, ZHAO Z Y, HAN B, et al. Tube enhanced foam: a novel way for aluminum foam enhancement[J]. Materials Letters, 2018, 227: 70-73. doi: 10.1016/j.matlet.2018.04.115
|
[18] |
ZHANG Z J, HUANG L, LI B, et al. Design of a novel multi-walled tube-reinforced aluminum foam for energy absorption[J]. Composite Structures, 2021, 276: 114584. doi: 10.1016/j.compstruct.2021.114584
|
[19] |
ZHANG Z J, WANG J, WANG Y J, et al. Elevated temperature axial crushing performance of multi-walled tube-reinforced aluminum foam[J]. Thin-Walled Structures, 2023, 185: 110582. doi: 10.1016/j.tws.2023.110582
|
[20] |
YIN H F, XIAO Y Y, WEN G L. Multi-objective robust optimization of foam-filled bionic thin-walled structures[J]. Thin-Walled Structures, 2016, 109: 332-343. doi: 10.1016/j.tws.2016.10.011
|
[21] |
CHEN W G, WIERZBICKI T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption[J]. Thin-Walled Structures, 2001, 39(4): 287-306. doi: 10.1016/S0263-8231(01)00006-4
|
[22] |
SUN Y, LI Q M. Dynamic compressive behavior of cellular materials: a review of phenomenon, mechanism and modelling[J]. International Journal of Impact Engineering, 2018, 112: 74-115. doi: 10.1016/j.ijimpeng.2017.10.006
|