Volume 44 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
ZHANG Chengzhi, ZHENG Supei, CHEN Xue, ZHANG Rui. A 4th-Order WENO-Type Entropy Stable Scheme for Ideal Magnetohydrodynamic Equations[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1398-1412. doi: 10.21656/1000-0887.440178
Citation: ZHANG Chengzhi, ZHENG Supei, CHEN Xue, ZHANG Rui. A 4th-Order WENO-Type Entropy Stable Scheme for Ideal Magnetohydrodynamic Equations[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1398-1412. doi: 10.21656/1000-0887.440178

A 4th-Order WENO-Type Entropy Stable Scheme for Ideal Magnetohydrodynamic Equations

doi: 10.21656/1000-0887.440178
  • Received Date: 2023-06-13
  • Rev Recd Date: 2023-08-02
  • Publish Date: 2023-11-01
  • A 4th-order entropy stable semi-discrete finite volume scheme was constructed for ideal magnetohydrodynamic equations. This scheme combines the high-order entropy conservative flux with the dissipation term reconstructed with the WENO scheme in the spatial direction. With a switching function added to the dissipation term, the numerical flux has lower dissipation and the WENO reconstruction satisfies the sign property. The source term used to control the divergence of the magnetic field is discretized with the center difference scheme to obtain high-order accuracy consistent with the entropy conservative flux. Several 1D and 2D cases show that, the scheme has no oscillation and strong robustness, and can accurately capture discontinuities.
  • loading
  • [1]
    GODUNOV S K. Symmetric form of the magnetohydrodynamic equation[J]. Chislennye Metody Mekh Sploshnoi Sredy, 1972, 3(1): 26-34.
    [2]
    TADMOR E. Numerical viscosity of entropy stable schemes for systems of conservation laws: Ⅰ[J]. Mathematics of Computation, 1987, 49(179): 91-103. doi: 10.1090/S0025-5718-1987-0890255-3
    [3]
    TADMOR E. Numerical viscosity and the entropy condition for conservative difference schemes[J]. Mathematic of Computation, 1984, 43(168): 369-381. doi: 10.1090/S0025-5718-1984-0758189-X
    [4]
    ROE P L. Entropy conservation schemes for Euler equations[R]. Lyon, France: Talk at HYP, 2006.
    [5]
    郑素佩, 李霄, 赵青宇, 等. 求解二维浅水波方程的旋转混合格式[J]. 应用数学和力学, 2022, 43(2): 176-186. doi: 10.21656/1000-0887.420063

    ZHENG Supei, LI Xiao, ZHAO Qingyu, et al. A rotated mixed scheme for solving 2D shallow water equations[J]. Applied Mathematics and Mechanics, 2022, 43(2): 176-186. (in Chinese)) doi: 10.21656/1000-0887.420063
    [6]
    贾豆, 郑素佩. 求解二维Euler方程的旋转通量混合格式[J]. 应用数学和力学, 2021, 42(2): 170-179. doi: 10.21656/1000-0887.410196

    JIA Dou, ZHENG Supei. A hybrid scheme of rotational flux for solving 2D Euler equations[J]. Applied Mathematics and Mechanics, 2021, 42(2): 170-179. (in Chinese) doi: 10.21656/1000-0887.410196
    [7]
    郑素佩, 王令, 王苗苗. 求解二维浅水波方程的移动网格旋转通量法[J]. 应用数学和力学, 2020, 41(1): 42-53. doi: 10.21656/1000-0887.400124

    ZHENG Supei, WANG Ling, WANG Miaomiao. Solution of 2D shallow water wave equations with the moving-grid rotating-invariance method[J]. Applied Mathematics and Mechanics, 2020, 41(1): 42-53. (in Chinese) doi: 10.21656/1000-0887.400124
    [8]
    FJORDHOLM U S, MISHRA S, TADMOR E. Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws[J]. SIAM Journal on Numerical Analysis, 2012, 50(2): 544-573. doi: 10.1137/110836961
    [9]
    BISWAS B, DUBEY R K. Low dissipative entropy stable schemes using third order WENO and TVD reconstructions[J]. Advances in Computational Mathematics, 2017, 44(4): 1153-1181.
    [10]
    DUAN J, TANG H. High-order accurate entropy stable finite difference schemes for one- and two-dimensional special relativistic hydrodynamics[J]. Advances in Applied Mathematics and Mechanics, 2020, 12: 1-29. doi: 10.4208/aamm.OA-2019-0124
    [11]
    DUAN J, TANG H. High-order accurate entropy stable finite difference schemes for the shallow water magnetohydrodynamics[J]. Journal of Computational Physics, 2021, 431: 110136. doi: 10.1016/j.jcp.2021.110136
    [12]
    郑素佩, 赵青宇, 封建湖. 基于WENO重构保号的四阶熵稳定格式[J]. 浙江大学学报(理学版), 2022, 49(3): 329-335. https://www.cnki.com.cn/Article/CJFDTOTAL-HZDX202203010.htm

    ZHENG Supei, ZHAO Qingyu, FENG Jianhu. The fourth order entropy stable scheme based on sign-preserving WENO reconstruction[J]. Journal of Zhejiang University (Science Edition), 2022, 49(3): 329-335. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZDX202203010.htm
    [13]
    DUAN J, TANG H. Entropy stable adaptive moving mesh schemes for 2D and 3D special relativistic hydrodynamics[J]. Journal of Computational Physics, 2021, 426: 109949.
    [14]
    WINTERS A R, GASSNER G J. Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations[J]. Journal of Computational Physics, 2015, 304: 72-108.
    [15]
    CHANDRASHEKAR P, KLINGENBERG C. Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian meshes[J]. SIAM Journal on Numerical Analysis, 2016, 54(2): 1313-1340.
    [16]
    翟梦情, 李琦, 郑素佩. 求解一维理想磁流体方程的移动网格熵稳定格式[J]. 计算力学学报, 2023, 40(2): 229-236. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202302010.htm

    ZHAI Mengqing, LI Qi, ZHENG Supei. A moving-grid entropy stable scheme for the 1D ideal MHD equations[J]. Chinese Journal of Computational Mechanics, 2023, 40(2): 229-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202302010.htm
    [17]
    LIU Y, SHU C W, ZHANG M. Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes[J]. Journal of Computational Physics, 2018, 354: 163-178.
    [18]
    SHU C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes[J]. Acta Numerica, 2020, 29: 701-762.
    [19]
    SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics, 1989, 77(2): 439-471.
    [20]
    ORSZAG S A, TANG C M. Small-scale structure of two-dimensional magnetohydrodynamic turbulence[J]. Journal of Fluid Mechanics, 1979, 90(1): 129-143.
    [21]
    BALSARA D S, SPICER D S. A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations[J]. Journal of Computational Physics, 1999, 149(2): 270-292.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (461) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return