Citation: | ZHANG Chengzhi, ZHENG Supei, CHEN Xue, ZHANG Rui. A 4th-Order WENO-Type Entropy Stable Scheme for Ideal Magnetohydrodynamic Equations[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1398-1412. doi: 10.21656/1000-0887.440178 |
[1] |
GODUNOV S K. Symmetric form of the magnetohydrodynamic equation[J]. Chislennye Metody Mekh Sploshnoi Sredy, 1972, 3(1): 26-34.
|
[2] |
TADMOR E. Numerical viscosity of entropy stable schemes for systems of conservation laws: Ⅰ[J]. Mathematics of Computation, 1987, 49(179): 91-103. doi: 10.1090/S0025-5718-1987-0890255-3
|
[3] |
TADMOR E. Numerical viscosity and the entropy condition for conservative difference schemes[J]. Mathematic of Computation, 1984, 43(168): 369-381. doi: 10.1090/S0025-5718-1984-0758189-X
|
[4] |
ROE P L. Entropy conservation schemes for Euler equations[R]. Lyon, France: Talk at HYP, 2006.
|
[5] |
郑素佩, 李霄, 赵青宇, 等. 求解二维浅水波方程的旋转混合格式[J]. 应用数学和力学, 2022, 43(2): 176-186. doi: 10.21656/1000-0887.420063
ZHENG Supei, LI Xiao, ZHAO Qingyu, et al. A rotated mixed scheme for solving 2D shallow water equations[J]. Applied Mathematics and Mechanics, 2022, 43(2): 176-186. (in Chinese)) doi: 10.21656/1000-0887.420063
|
[6] |
贾豆, 郑素佩. 求解二维Euler方程的旋转通量混合格式[J]. 应用数学和力学, 2021, 42(2): 170-179. doi: 10.21656/1000-0887.410196
JIA Dou, ZHENG Supei. A hybrid scheme of rotational flux for solving 2D Euler equations[J]. Applied Mathematics and Mechanics, 2021, 42(2): 170-179. (in Chinese) doi: 10.21656/1000-0887.410196
|
[7] |
郑素佩, 王令, 王苗苗. 求解二维浅水波方程的移动网格旋转通量法[J]. 应用数学和力学, 2020, 41(1): 42-53. doi: 10.21656/1000-0887.400124
ZHENG Supei, WANG Ling, WANG Miaomiao. Solution of 2D shallow water wave equations with the moving-grid rotating-invariance method[J]. Applied Mathematics and Mechanics, 2020, 41(1): 42-53. (in Chinese) doi: 10.21656/1000-0887.400124
|
[8] |
FJORDHOLM U S, MISHRA S, TADMOR E. Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws[J]. SIAM Journal on Numerical Analysis, 2012, 50(2): 544-573. doi: 10.1137/110836961
|
[9] |
BISWAS B, DUBEY R K. Low dissipative entropy stable schemes using third order WENO and TVD reconstructions[J]. Advances in Computational Mathematics, 2017, 44(4): 1153-1181.
|
[10] |
DUAN J, TANG H. High-order accurate entropy stable finite difference schemes for one- and two-dimensional special relativistic hydrodynamics[J]. Advances in Applied Mathematics and Mechanics, 2020, 12: 1-29. doi: 10.4208/aamm.OA-2019-0124
|
[11] |
DUAN J, TANG H. High-order accurate entropy stable finite difference schemes for the shallow water magnetohydrodynamics[J]. Journal of Computational Physics, 2021, 431: 110136. doi: 10.1016/j.jcp.2021.110136
|
[12] |
郑素佩, 赵青宇, 封建湖. 基于WENO重构保号的四阶熵稳定格式[J]. 浙江大学学报(理学版), 2022, 49(3): 329-335. https://www.cnki.com.cn/Article/CJFDTOTAL-HZDX202203010.htm
ZHENG Supei, ZHAO Qingyu, FENG Jianhu. The fourth order entropy stable scheme based on sign-preserving WENO reconstruction[J]. Journal of Zhejiang University (Science Edition), 2022, 49(3): 329-335. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZDX202203010.htm
|
[13] |
DUAN J, TANG H. Entropy stable adaptive moving mesh schemes for 2D and 3D special relativistic hydrodynamics[J]. Journal of Computational Physics, 2021, 426: 109949.
|
[14] |
WINTERS A R, GASSNER G J. Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations[J]. Journal of Computational Physics, 2015, 304: 72-108.
|
[15] |
CHANDRASHEKAR P, KLINGENBERG C. Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian meshes[J]. SIAM Journal on Numerical Analysis, 2016, 54(2): 1313-1340.
|
[16] |
翟梦情, 李琦, 郑素佩. 求解一维理想磁流体方程的移动网格熵稳定格式[J]. 计算力学学报, 2023, 40(2): 229-236. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202302010.htm
ZHAI Mengqing, LI Qi, ZHENG Supei. A moving-grid entropy stable scheme for the 1D ideal MHD equations[J]. Chinese Journal of Computational Mechanics, 2023, 40(2): 229-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202302010.htm
|
[17] |
LIU Y, SHU C W, ZHANG M. Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes[J]. Journal of Computational Physics, 2018, 354: 163-178.
|
[18] |
SHU C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes[J]. Acta Numerica, 2020, 29: 701-762.
|
[19] |
SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics, 1989, 77(2): 439-471.
|
[20] |
ORSZAG S A, TANG C M. Small-scale structure of two-dimensional magnetohydrodynamic turbulence[J]. Journal of Fluid Mechanics, 1979, 90(1): 129-143.
|
[21] |
BALSARA D S, SPICER D S. A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations[J]. Journal of Computational Physics, 1999, 149(2): 270-292.
|