Citation: | LIU Yifan, MA Xiaomin, WANG Zhiyong, WANG Zhihua. Analytical Solution of the Concrete Homogenization Method Based on the ANN[J]. Applied Mathematics and Mechanics, 2024, 45(5): 554-570. doi: 10.21656/1000-0887.440106 |
[1] |
杜晨, 彭雄奇. 变厚度连续纤维增强复合材料铺层设计优化方法[J]. 应用数学和力学, 2022, 43(12): 1313-1323. doi: 10.21656/1000-0887.420410
DU Chen, PENG Xiongqi. Lamination design optimization for continuous fiber reinforced composites of variable thicknesses[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1313-1323. (in Chinese) doi: 10.21656/1000-0887.420410
|
[2] |
KUMAR R D, WAGH PH, EMANOIL L. A review on synthetic fibers for polymer matrix composites: performance, failure modes and applications[J]. Materials, 2022, 15(14): 1790.
|
[3] |
张雪琴, 马昆林, 龙广成, 等. 粗骨料形态特征表征参数及其与混凝土性能关系的研究进展[J]. 材料导报, 2023, 38(2): 22060263. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202402012.htm
ZHANG Xueqin, MA Kunlin, LONG Guangcheng, et al. Research progress in characterization parameters of coarse aggregate morphology and its relationship with concrete properties[J]. Materials Reports, 2023, 38(2): 22060263. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202402012.htm
|
[4] |
陈海玉, 徐福卫. 细观等效理论预测再生混凝土宏观力学参数[J]. 应用数学和力学, 2022, 43(7): 772-782. doi: 10.21656/1000-0887.420079
CHEN Haiyu, XU Fuwei. Prediction of the macroscopic mechanics properties of recycled aggregate concrete based on the mesoscopic equivalence theory[J]. Applied Mathematics and Mechanics, 2022, 43(7): 772-782. (in Chinese) doi: 10.21656/1000-0887.420079
|
[5] |
WU L, HUANG D. Peridynamic modeling and simulations on concrete dynamic failure and penetration subjected to impact loadings[J]. Engineering Fracture Mechanics, 2022, 259: 108135. doi: 10.1016/j.engfracmech.2021.108135
|
[6] |
李向南, 左晓宝, 周广盼, 等. 混凝土多尺度应力响应方程及其数值模拟[J]. 力学学报, 2022, 54(11): 3113-3126. doi: 10.6052/0459-1879-22-269
LI Xiangnan, ZUO Xiaobao, ZHOU Guangpan, et al. Equation and numerical simulation on multiscale stress response of concrete[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3113-3126. (in Chinese) doi: 10.6052/0459-1879-22-269
|
[7] |
孙伟, 包世诚, 张嘎. 基于近场动力学均匀化的混凝土防渗墙等效损伤模型[J]. 同济大学学报(自然科学版), 2022, 50(9): 1240-1250. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202209004.htm
SUN Wei, BAO Shicheng, ZHANG Ga. An equivalent damage model of concrete cut-off wall based on homogenization of peridynamics[J]. Journal of Tongji University(Natural Science), 2022, 50(9): 1240-1250. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202209004.htm
|
[8] |
鞠晓喆, 朱加文, 梁利华, 等. 石墨烯纳米复合材料的降阶均匀化方法及其数值实现[J]. 复合材料学报, 2021, 38(12): 4362-4370. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202112038.htm
JU Xiaozhe, ZHU Jiawen, LIANG Lihua, et al. Reduced order homogenization of graphene nanocomposites and its numerical implementation[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4362-4370. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202112038.htm
|
[9] |
SUN Q, ASQARDOUST S, SARMAH A, et al. Elastoplastic analysis of AA7075-O aluminum sheet by hybrid micro-scale representative volume element modeling with really-distributed particles and in-situ SEM experimental testing[J]. Journal of Materials Science & Technology, 2022, 123(28): 201-221.
|
[10] |
邱伊健, 郑萍, 程香平, 等. 随机多尺度短切碳纤维复合结构模型中RVE尺寸效应和方向模量的均一化响应[J]. 兵工学报, 2022, 44(3): 702-717. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO202303007.htm
QIU Yijian, ZHENG Ping, CHENG Xiangping, et al. RVE size effect and homogenization response of directional modulus in stochastic multi-scale chopped carbon fiber composite structure[J]. Acta Armamentarii, 2022, 44(3): 702-717. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO202303007.htm
|
[11] |
LI R, YANG M, LIANG B. The homogenized transformation method for the calculation of stress intensity factor in cracked FGM structure[J]. International Journal of Computational Methods, 2021, 18(2): 2050014. doi: 10.1142/S0219876220500140
|
[12] |
梁文鹏, 周家作, 陈盼, 等. 基于均匀化理论的含水合物土弹塑性本构模型[J]. 岩土力学, 2021, 42(2): 481-490. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102020.htm
LIANG Wenpeng, ZHOU Jiazuo, CHEN Pan, et al. An elastoplastic constitutive model of gas hydrate bearing sediments based on homogenization theory[J]. Rock and Soil Mechanics, 2021, 42(2): 481-490. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102020.htm
|
[13] |
REZAKHANI R, ALNAGGAR M, CUSATIS G. Multiscale homogenization analysis of alkali-silica reaction (ASR) effect in concrete[J]. Engineering, 2019, 5(6): 1139-1154. doi: 10.1016/j.eng.2019.02.007
|
[14] |
CHOU T W. A self-consistent approach to the elastic stiffness of short-fiber composites[J]. Journal of Composite Materials, 1980, 14(3): 178-188. doi: 10.1177/002199838001400301
|
[15] |
田十方, 李彪. 梯度优化物理信息神经网络(GOPINNs): 求解复杂非线性问题的深度学习方法[J/OL]. 物理学报[2023-04-13].
TIAN Shifang, LI Biao. Gradient-optimized physical information neural networks (GOPINNs): deep learning methods for solving complex nonlinear problems[J/OL]. Acta Physica Sinica[2023-04-13].
|
[16] |
SHANG M, LI H, AHMAD A, et al. Predicting the mechanical properties of RCA-based concrete using supervised machine learning algorithms[J]. Materials, 2022, 15(2): 647. doi: 10.3390/ma15020647
|
[17] |
HAN T, SIDDIQUE A, KHAYAT K, et al. An ensemble machine learning approach for prediction and optimization of modulus of elasticity of recycled aggregate concrete[J]. Construction and Building Materials, 2020, 244: 118271. doi: 10.1016/j.conbuildmat.2020.118271
|
[18] |
LI X, LIU Z, CUI S, et al. Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 347: 735-753. doi: 10.1016/j.cma.2019.01.005
|
[19] |
查文舒, 李道伦, 沈陆航, 等. 基于神经网络的偏微分方程求解方法研究综述[J]. 力学学报, 2022, 54(3): 543-556. https://cdmd.cnki.com.cn/Article/CDMD-10358-1023101497.htm
ZHA Wenshu, LI Daolun, SHEN Luhang, et al. Review of neural network-based methods for solving partial differential equations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 543-556. (in Chinese) https://cdmd.cnki.com.cn/Article/CDMD-10358-1023101497.htm
|
[20] |
闫海, 邓忠民. 基于深度学习的短纤维增强聚氨酯复合材料性能预测[J]. 复合材料学报, 2019, 36(6): 1413-1420. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201906007.htm
YAN Hai, DENG Zhongmin. Prediction of properties of short fiber reinforced urethane polymer composites based on deep learning[J]. Acta Materiae Compositae Sinica, 2019, 36(6): 1413-1420. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201906007.htm
|
[21] |
KANI J, ELSHEIKH A. Reduced-order modeling of subsurface multi-phase flow models using deep residual recurrent neural networks[J]. Transport in Porous Media, 2019, 126(3): 713-741. doi: 10.1007/s11242-018-1170-7
|
[22] |
YANG H, GUO X, TANG S, et al. Derivation of heterogeneous material laws via data-driven principal component expansions[J]. Computational Mechanics, 2019, 64: 365-379. doi: 10.1007/s00466-019-01728-w
|
[23] |
ZHANG J, CHEN W S, HAO H, et al. Performance of concrete targets mixed with coarse aggregates against rigid projectile impact[J]. International Journal of Impact Engineering, 2020, 141: 103565. doi: 10.1016/j.ijimpeng.2020.103565
|
[24] |
NORRIS A N. A differential scheme for the effective moduli of composites[J]. Mechanics of Materials, 1985, 4(1): 1-16. doi: 10.1016/0167-6636(85)90002-X
|
[25] |
WANG H L, LI Q B. Prediction of elastic modulus and Poisson's ratio for unsaturated concrete[J]. International Journal of Solids and Structures, 2007, 44(5): 1370-1379. doi: 10.1016/j.ijsolstr.2006.06.028
|
[26] |
ZHANG J, WANG Z Y, YANG H W, et al. 3D meso-scale modeling of reinforcement concrete with high volume fraction of randomly distributed aggregates[J]. Construction and Building Materials, 2018, 164: 350-361. doi: 10.1016/j.conbuildmat.2017.12.229
|
[27] |
周杰, 赵婷婷, 陈青青, 等. 基于GoogLeNet的混凝土细观模型应力-应变曲线预测[J]. 应用数学和力学, 2022, 43(3): 290-299. doi: 10.21656/1000-0887.420136
ZHOU Jie, ZHAO Tingting, CHEN Qingqing, et al. Prediction of concrete meso-model stress-strain curves based on GoogLeNet[J]. Applied Mathematics and Mechanics, 2022, 43(3): 290-299. (in Chinese) doi: 10.21656/1000-0887.420136
|
[28] |
LI B B, JIANG J F, XIONG H B, et al. Improved concrete plastic-damage model for FRP-confined concrete based on true tri-axial experiment[J]. Composite Structures, 2021, 269: 114051. doi: 10.1016/j.compstruct.2021.114051
|
[29] |
CHEN P, LIU J X, CUI S M, et al. Mesoscale analysis of concrete under axial compression[J]. Construction and Building Materials, 2022, 337: 127580. doi: 10.1016/j.conbuildmat.2022.127580
|
[30] |
苏捷. 混凝土受压与受拉性能的尺寸效应研究[D]. 长沙: 湖南大学, 2012.
SU Jie. The research on the size effect of concrete behavior in compression and tension[D]. Changsha: Hunan University, 2012. (in Chinese)
|
[31] |
秦庆华, 杨庆生. 非均匀材料多场耦合行为的宏细观理论[M]. 北京: 高等教育出版社, 2006: 17-19.
QIN Qinghua, YANG Qingsheng. Macro-Micro-Theory on Multi-Field Coupling Behavior of Heterogeneous Materials[M]. Beijing: Higher Education Press, 2006: 17-19. (in Chinese)
|
[32] |
毛晓敏, 张慧华, 纪晓磊, 等. 基于XFEM和GA-BP神经网络的裂纹智能识别研究[J]. 应用数学和力学, 2022, 43(11): 1268-1280. doi: 10.21656/1000-0887.420250
MAO Xiaomin, ZHANG Huihua, JI Xiaolei, et al. Intelligent crack recognition based on XFEM and GA-BP neural networks[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1268-1280. (in Chinese) doi: 10.21656/1000-0887.420250
|
[33] |
DONG H, LINGHU J, NIE Y. Integrated wavelet-learning method for macroscopic mechanical properties prediction of concrete composites with hierarchical random configurations[J]. Composite Structures, 2023, 304(1): 116357.
|
[34] |
杜修力, 金浏. 混凝土材料宏观力学特性分析的细观单元等效化模型[J]. 计算力学学报, 2012, 29(5): 654-661. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201205004.htm
DU Xiuli, JIN Liu. Analysis of macroscopic mechanical properties of concrete materials meso-unit equivalence model[J]. Chinese Journal of Computational Mechanics, 2012, 29(5): 654-661. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201205004.htm
|
[35] |
陈青青, 张煜航, 张杰, 等. 含孔隙混凝土二维细观建模方法研究[J]. 应用数学和力学, 2020, 41(2): 182-194. doi: 10.21656/1000-0887.400058
CHEN Qingqing, ZHANG Yuhang, ZHANG Jie, et al. Study on a 2D mesoscopic modeling method for concrete with voids[J]. Applied Mathematics and Mechanics, 2020, 41(2): 182-194. (in Chinese) doi: 10.21656/1000-0887.400058
|
[36] |
陈青青. 含孔隙混凝土细观建模方法与数值研究[D]. 太原: 太原理工大学, 2020.
CHEN Qingqing. Meso-scale modeling and numerical investigation of concrete with pores[D]. Taiyuan: Taiyuan University of Technology, 2020. (in Chinese)
|
[37] |
金浏, 余文轩, 杜修力, 等. 低应变率下混凝土动态拉伸破坏尺寸效应细观模拟[J]. 工程力学, 2019, 36(8): 59-78. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201908006.htm
JIN Liu, YU Wenxuan, DU Xiuli, et al. Meso-scale simulation of size effect of dynamic tensile strength of concrete under low strain rates[J]. Engineering Mechanics, 2019, 36(8): 59-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201908006.htm
|
[38] |
吴震. EPS多孔混凝土力学性能试验及三维数值模拟研究[D]. 上海: 上海交通大学, 2012.
WU Zhen. Experimental research and 3D modeling of EPS cellular concrete[D]. Shanghai: Shanghai Jiao Tong University, 2012. (in Chinese)
|
[39] |
金浏. 细观混凝土分析模型与方法研究[D]. 北京: 北京工业大学, 2014.
JIN Liu. Study on meso-scopic model and analysis method of concrete[D]. Beijing: Beijing University of Technology, 2014. (in Chinese)
|