| Citation: | JI Haibo, WANG Xin, SU Jinbo, LI Zhen, WANG Pengfei, JU Yuanyuan, LU Tianjian. Synergistic Effects of Impact and Attack Angles on Anti-Penetration Performances of Thin Aramid Laminates[J]. Applied Mathematics and Mechanics, 2024, 45(2): 184-196. doi: 10.21656/1000-0887.440084 | 
	                | [1] | 
					 RUBIO I, RODRÍGUEZ-MILLÁN M, MARCO M, et al. Ballistic performance of aramid composite combat helmet for protection against small projectiles[J]. Composite Structures, 2019,  226: 111153. doi:  10.1016/j.compstruct.2019.111153 
						
					 | 
			
| [2] | 
					 FAN T, SUN Z, ZHANG Y, et al. Novel Kevlar fabric composite for multifunctional soft body armor[J]. Composites Part B: Engineering, 2022, 242: 110106. doi:  10.1016/j.compositesb.2022.110106 
						
					 | 
			
| [3] | 
					 PRATOMO A N, SANTOSA S P, GUNAWAN L, et al. Design optimization and structural integrity simulation of aluminum foam sandwich construction for armored vehicle protection[J]. Composite Structures, 2021,  276: 114461. doi:  10.1016/j.compstruct.2021.114461 
						
					 | 
			
| [4] | 
					 王晓强, 朱锡. 舰船用钢的抗弹道冲击性能研究进展[J]. 中国造船, 2010, 51(1): 227-236. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201001030.htm 
					WANG Xiaoqiang, ZHU Xi. Review on ballistic impact resistance of ship building steel[J]. Shipbuilding of China, 2010, 51(1): 227-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201001030.htm 
						
					 | 
			
| [5] | 
					 李营, 张磊, 赵鹏铎, 等. 舰船抗反舰导弹技术研究进展与发展路径[J]. 中国造船, 2016, 57(4): 186-196. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201604021.htm 
					LI Ying, ZHANG Lei, ZHAO Pengze, et al. A review on research progress and developing routes of warship anti-explosion under anti-ship missile explosion[J]. Shipbuilding of China, 2016, 57(4): 186-196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201604021.htm 
						
					 | 
			
| [6] | 
					 辛春亮, 王俊林, 薛再清, 等. 反舰导弹战斗部现状及发展趋势[J]. 战术导弹技术, 2016, 6(6): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201606021.htm 
					XIN Chunliang, WANG Junlin, XUE Zaiqing, et al. Review on status and development of antiship missile warhead[J]. Tactical Missile Technology, 2016, 6(6): 105-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201606021.htm 
						
					 | 
			
| [7] | 
					 李典, 侯海量, 朱锡, 等. 舰船装甲防护结构抗弹道冲击的研究进展[J]. 中国造船, 2018, 59(1): 237-250. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201801023.htm 
					LI Dian, HOU Hailiang, ZHU Xi, et al. Review on ballistic impact resistance of ship armor protection structure[J]. Shipbuilding of China, 2018,  59(1): 237-250. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201801023.htm 
						
					 | 
			
| [8] | 
					 RIEDEL W, NAHME H, WHITE D M, et al. Hypervelocity impact damage prediction in composites, part Ⅱ: experimental investigations and simulations[J]. International Journal of Impact Engineering, 2006, 33(1/12): 670-680. 
						
					 | 
			
| [9] | 
					 王晓强, 虢忠仁, 宫平, 等. 抗弹复合材料在舰船防护上的应用研究[J]. 工程塑料应用, 2014, 42(11): 143-146. https://www.cnki.com.cn/Article/CJFDTOTAL-ACSN201411035.htm 
					WANG Xiaoqiang, GUO Zhongren, GONG Ping, et al. Application research of bulletproof composites in warship protection[J]. Engineering Plastics Application, 2014, 42(11): 143-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ACSN201411035.htm 
						
					 | 
			
| [10] | 
					 虢忠仁, 金子明, 钟蔚华, 等. 芳纶复合材料抗钨球性能研究[J]. 化工新型材料, 2009, 37(1): 3. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC200901021.htm 
					GUO Zhongren, JIN Ziming, ZHONG Weihua, et al. The research on aramid composite materials defending tungsten alloy sphere[J]. New Chemical Materials, 2009,  37(1): 3. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC200901021.htm 
						
					 | 
			
| [11] | 
					 BANDARU A K, CHAVAN V V, AHMAD S, et al. Ballistic impact response of Kevlar reinforced thermoplastic composite armors[J]. International Journal of Impact Engineering, 2016, 89: 1-13. doi:  10.1016/j.ijimpeng.2015.10.014 
						
					 | 
			
| [12] | 
					 NUNES S G, SCAZZOSI R, MANES A, et al. Influence of projectile and thickness on the ballistic behavior of aramid composites: experimental and numerical study[J]. International Journal of Impact Engineering, 2019, 132: 103307. doi:  10.1016/j.ijimpeng.2019.05.021 
						
					 | 
			
| [13] | 
					 GUO G, ALAM S, PEEL L D. An investigation of the effect of a Kevlar-29 composite cover layer on the penetration behavior of a ceramic armor system against 7.62 mm APM2 projectiles[J]. International Journal of Impact Engineering, 2021, 157: 104000. doi:  10.1016/j.ijimpeng.2021.104000 
						
					 | 
			
| [14] | 
					 王元博, 王肖钧, 胡秀章, 等. Kevlar层合材料抗弹性能研究[J]. 工程力学, 2005, 22(3): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200503014.htm 
					WANG Yuanbo, WANG Xiaojun, HU Xiuzhang, et al. Experimental study of ballistic resistance of Kevlar laminates[J]. Engineering Mechanics, 2005, 22(3): 76-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200503014.htm 
						
					 | 
			
| [15] | 
					 MANES A, BRESCIANI L M, GIGLIO M. Ballistic performance of multi-layered fabric composite plates impacted by different 7.62 mm calibre projectiles[J]. Procedia Engineering, 2014, 88: 208-215. doi:  10.1016/j.proeng.2014.11.146 
						
					 | 
			
| [16] | 
					 MILLÁN M R, MORENO C E, MIGUÉLEZ H, et al. Numerical analysis of the ballistic behaviour of KevlarⓇ composite under impact of double-nosed stepped cylindrical projectiles[J]. Journal of Reinforced Plastics & Composites, 2016, 35(2): 124-137. 
						
					 | 
			
| [17] | 
					 SIKARWAR R S, VELMURUGAN R, GUPTA N K. Ballistic performance of Kevlar/epoxy composite laminates[J]. Proceedings of the Indian National Science Academy, 2013, 79(4): 789. doi:  10.16943/ptinsa/2013/v79i4/48001 
						
					 | 
			
| [18] | 
					 GOLDSMITH W. Non-ideal projectile impact on targets[J]. International Journal of Impact Engineering, 1999, 22(2/3): 95-395. 
						
					 | 
			
| [19] | 
					 张明. Kevlar129/EVA复合材料抗弹性能数值模拟研究[D]. 太原: 中北大学, 2016. 
					ZHANG Ming. Numerical simulation research of ballistic performance of Kevlar129/EVA composites[D]. Taiyuan: North University of China, 2016. (in Chinese) 
						
					 | 
			
| [20] | 
					 季海波, 王昕, 赵振宇, 等. 带攻角平头弹侵彻不同厚度芳纶层合板的数值模拟研究[J]. 爆炸与冲击, 2023, 43(6): 134-151. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202306009.htm 
					JI Haibo, WANG Xin, ZHAO Zhenyu, et al. Penetration of flat-nosed projectile with attack angle across aramid laminates having varying thickness: numerical simulation[J]. Explosion and Shock Waves, 2023, 43(6): 134-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202306009.htm 
						
					 | 
			
| [21] | 
					 汤雪志, 王志军, 董理赢, 等. 弹丸斜撞击间隔靶板的数值模拟[J]. 兵器装备工程学报, 2019, 40(6): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201906011.htm 
					TANG Xuezhi, WANG Zhijun, DONG Liying, et al. Numerical simulation analysis of projectile oblique impact target plate[J]. Journal of Ordnance Equipment Engineering, 2019, 40(6): 47-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201906011.htm 
						
					 | 
			
| [22] | 
					 张昆, 罗刚, 谢伟. 低碳金属板对带攻角侵彻弹体的动态响应仿真分析[J]. 计算机辅助工程, 2019, 28(2): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201902013.htm 
					ZHANG Kun, LUO Gang, XIE Wei. Simulation analysis on dynamic response of penetration projectile with attack angle against low carbon metal plate[J]. Computer Aided Engineering, 2019, 28(2): 63-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201902013.htm 
						
					 | 
			
| [23] | 
					 刘坚成, 张雷雷, 徐坤, 等. 反弹道非正侵彻的弹体结构响应实验研究[J]. 兵工学报, 2019, 40(9): 1797-1803. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201909005.htm 
					LIU Jiancheng, ZHANG Leilei, XU Kun, et al. Structural response of projectile in reverse ballistic non-normal penetrating experiment[J]. Acta Armamentarii, 2019, 40(9): 1797-1803. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201909005.htm 
						
					 | 
			
| [24] | 
					 郭松林, 高世桥, 李泽章, 等. 弹引系统攻角侵彻混凝土仿真与试验研究[J]. 兵器装备工程学报, 2022, 43(1): 135-139. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI202201021.htm 
					GUO Songlin, GAO Shiqiao, LI Zezhang, et al. Experiment and simulation of projectile obliquely penetrating into concrete target at attack angle[J]. Journal of Ordnance Equipment Engineering, 2022, 43(1): 135-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI202201021.htm 
						
					 | 
			
| [25] | 
					 李鹏程, 张先锋, 刘闯, 等. 攻角和入射角对弹体侵彻混凝土薄靶弹道特性影响规律研究[J]. 爆炸与冲击, 2022, 42(11): 113302. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202211007.htm 
					LI Pengcheng, ZHANG Xianfeng, LIU Chuang, et al. Study on the influence of pitch and trajectory angle on penetration of projectiles into thin concrete targets[J]. Explosion and Shock Waves, 2022, 42(11): 113302. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202211007.htm 
						
					 | 
			
| [26] | 
					 姚熊亮, 王治, 叶墡君, 等. 球头弹体侵彻舰船板架加强筋时的攻角变化简化理论模型[J]. 爆炸与冲击, 2021, 41(3): 033301. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202103014.htm 
					YAO Xiongliang, WANG Zhi, YE Shanjun, et al. A simplified theoretical model for attack angle change of a hemisphericallynosed projectile while penetrating the stiffener of a ship plate frame[J]. Explosion and Shock Waves, 2021, 41(3): 033301. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202103014.htm 
						
					 | 
			
| [27] | 
					 MO G L, LIU J, MA Q W, et al. Influence of impact velocity and impact attack angle of bullets on damage of human tissue surrogate-ballistic gelatin[J]. Chinese Journal of Traumatology, 2022, 25(4): 209-217. doi:  10.1016/j.cjtee.2022.03.004 
						
					 | 
			
| [28] | 
					 吴世永, 李慧, 宿德志. 具有攻角的钨合金弹侵彻运动靶板的数值模拟研究[J]. 兵器装备工程学报, 2019, 40(7): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201907005.htm 
					WU Shiyong, LI Hui, SU Dezhi. Numerical simulation study of tungsten alloy projectile penetrating moving target with angle of attack[J]. Journal of Ordnance Equipment Engineering, 2019, 40(7): 20-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201907005.htm 
						
					 | 
			
| [29] | 
					 DONG Y L, ZI F, YANG L H, et al. Research on anti-penetration performance of composite armor of steel/composite materials[J]. Mechanics of Advanced Materials and Structures, 2022, 29(22): 7035-7050. 
						
					 | 
			
| [30] | 
					 BORVIK T, DEY S, CLAUSEN A H. Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles[J]. International Journal of Impact Engineering, 2009, 36(7): 948-964. doi:  10.1016/j.ijimpeng.2008.12.003 
						
					 | 
			
| [31] | 
					 GILIOLI A, MANES A, GIGLIO M, et al. Predicting ballistic impact failure of aluminium 6061-T6 with the rate-independent Bao-Wierzbicki fracture model[J]. International Journal of Impact Engineering, 2015, 76: 207-220. doi:  10.1016/j.ijimpeng.2014.10.004 
						
					 | 
			
| [32] | 
					 GREGORI D, SCAZZOSI R, NUNES S G, et al. Analytical and numerical modelling of high-velocity impact on multilayer alumina/aramid fiber composite ballistic shields: improvement in modelling approaches[J]. Composites Part B: Engineering, 2020, 187: 107830. doi:  10.1016/j.compositesb.2020.107830 
						
					 | 
			
| [33] | 
					 DZ A, YING S A, LI C A, et al. Influence of fabric structure and thickness on the ballistic impact behavior of Ultrahigh molecular weight polyethylene composite laminate[J]. Materials & Design (1980-2015), 2014, 54: 315-322. 
						
					 | 
			
| [34] | 
					 柳占立, 初东阳, 王涛, 等. 爆炸和冲击载荷下金属材料及结构的动态失效仿真[J]. 应用数学和力学, 2021, 42(1): 1-14. doi:  10.21656/1000-0887.410262 
					LIU Zhanli, CHU Dongyang, WANG Tao, et al. Dynamic failure simulation of metal materials and structures under blast and impact loading[J]. Applied Mathematics and Mechanics, 2021, 42(1): 1-14. (in Chinese) doi:  10.21656/1000-0887.410262 
						
					 | 
			
| [35] | 
					 陈刚, 陈小伟, 陈忠富, 等. A3钢钝头弹撞击45钢板破坏模式的数值分析[J]. 爆炸与冲击, 2007, 27(5): 390-397. ( https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200705002.htm 
					CHEN Gang, CHEN Xiaowei, CHEN Zhongfu. Simulations of A3 steel blunt projectiles impacting 45 steel plates[J]. Explosion and Shock Waves, 2007, 27(5): 390-397. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200705002.htm 
						
					 | 
			
| [36] | 
					 MA D Y, MANES A, AMICO S C, et al. Ballistic strain-rate-dependent material modelling of glass-fibre woven composite based on the prediction of a meso-heterogeneous approach[J]. Composite Structures, 2019, 216: 187-200. doi:  10.1016/j.compstruct.2019.02.102 
						
					 | 
			
| [37] | 
					 HALLQUIST J. LS-DYNA keyword user's manual, version: 970[Z]. 2003. 
						
					 | 
			
| [38] | 
					 LAMBERT J, JONAS G H. Towards standardization in terminal ballistics testing: velocity representation[J]. 1976. DOI:  
						
					 | 
			
| [39] | 
					 JENA P, JAGTAP N, KUMAR K S, et al. Some experimental studies on angle effect in penetration[J]. International Journal of Impact Engineering, 2010, 37(5): 489-501. doi:  10.1016/j.ijimpeng.2009.11.009 
						
					 | 
			
| [40] | 
					 高旭东, 李庆明. 带攻角斜侵彻混凝土的弹道偏转分析[J]. 兵工学报, 2014, 35(S2): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO2014S2007.htm 
					GAO Xudong, LI Qingming. Trajectory analysis of projectile obliquely penetrating into concrete target at attack angle[J].Acta Armamentarii, 2014, 35(S2): 33-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO2014S2007.htm 
						
					 |