Citation: | TANG Huaicheng, YANG Yini, LIU Ye, ZOU Mingsong. A Research Review of Ship Mechanical Vibration Damping & Isolation Technologies and Algorithms[J]. Applied Mathematics and Mechanics, 2023, 44(12): 1413-1427. doi: 10.21656/1000-0887.440062 |
[1] |
俞孟萨, 叶剑平, 吴有生, 等. 船舶声呐部位自噪声的预报方法及其控制技术[J]. 船舶力学, 2002, 6(5): 80-94.
YU Mengsa, YE Jianping, WU Yousheng, et al. Prediction and control method of self-noise in ship's sonar domes[J]. Journal of Ship Mechanics, 2002, 6(5): 80-94. (in Chinese)
|
[2] |
徐洋, 华宏星, 张志谊, 等. 舰船主动隔振技术综述[J]. 舰船科学技术, 2008, 30(2): 27-33.
XU Yang, HUA Hongxing, ZHANG Zhiyi, et al. Summary of ship active vibration isolation system[J]. Ship Science and Technology, 2008, 30(2): 27-33. (in Chinese)
|
[3] |
REN M Z. A variant design of the dynamic vibration absorber[J]. Journal of Sound and Vibration, 2001, 245(4): 762-770. doi: 10.1006/jsvi.2001.3564
|
[4] |
CHEUNG Y L, WONG W O, CHENG L. Optimization of a hybrid vibration absorber for vibration control of structures under random force excitation[J]. Journal of Sound and Vibration, 2013, 332(3): 494-509. doi: 10.1016/j.jsv.2012.09.014
|
[5] |
孟令帅. 新型准零刚度隔振器的设计和特性研究[D]. 博士学位论文. 北京: 中国人民解放军军事医学科学院, 2015.
MENG Lingshuai. Design and characteristics analysis of the novel quasi-zero stiffness isolator[D]. PhD Thesis. Beijing: Academy of Military Medical Sciences, 2015. (in Chinese)
|
[6] |
NIU J C, SONG K J, LIM C W. On active vibration isolation of floating raft system[J]. Journal of Sound and Vibration, 2005, 285: 391-406. doi: 10.1016/j.jsv.2004.08.013
|
[7] |
JIANG G Q, WANG Y, LI F M, et al. An integrated nonlinear passive vibration control system and its vibration reduction properties[J]. Journal of Sound and Vibration, 2021, 509: 116231. doi: 10.1016/j.jsv.2021.116231
|
[8] |
严济宽. 隔振降噪技术的新进展[J]. 噪声与振动控制, 1991(5/6): 11-16.
YAN Jikuan. New development of vibration isolation and noise reduction technology[J]. Noise and Vibration Control, 1991(5/6): 11-16. (in Chinese)
|
[9] |
沈荣瀛. 船舶轮机振动噪声控制综述[J]. 机电设备, 1999(3) : 22-25.
SHEN Rongying. A summary of vibration and noise control of ship turbine[J]. Mechanical and Electrical Equipment, 1999(3) : 22-25. (in Chinese)
|
[10] |
IBRAHIM R A. Recent advances in nonlinear passive vibration isolators[J]. Journal of Sound and Vibration, 2008, 314: 371-452. doi: 10.1016/j.jsv.2008.01.014
|
[11] |
李永胜, 王纬波, 张彤彤, 等. 复合结构浮筏设计及隔振性能研究[C]//第十八届船舶水下噪声学术讨论会论文集. 昆明: 中国船舶科学研究中心《船舶力学》编辑部, 2021.
LI Yongsheng, WANG Weibo, ZHANG Tongtong, et al. Design of floating raft with composite structure and study on vibration isolation performance[C]//Proceedings of the 18 th Symposium on Ship Underwater Noise. Kunming: Journal of Ship Mechanics Editorial Office, China Ship Science Research Center, 2021. (in Chinese)
|
[12] |
靳帅楠, 靳国永, 叶天贵, 等. 船首声呐平台自噪声预报及综合控制[J]. 中国舰船研究, 2022, 17(S1): 10-18.
JIN Shuainan, JIN Guoyong, YE Tiangui, et al. Predication and comprehensive control of self-noise of ship's sonar platform[J]. Chinese Journal of Ship Research, 2022, 17(S1): 10-18. (in Chinese)
|
[13] |
TENG H D, CHEN Q. Study on vibration isolation properties of solid and liquid mixture[J]. Journal of Sound and Vibration, 2009, 326 : 137-149. doi: 10.1016/j.jsv.2009.04.036
|
[14] |
刘兴天, 黄修长, 张志谊, 等. 激励幅值及载荷对准零刚度隔振器特性的影响[J]. 机械工程学报, 2013, 49(6): 89-94.
LIU Xingtian, HUANG Xiuchang, ZHANG Zhiyi, et al. Influence of excitation amplitude and load on the characteristics of quasi-zero stiffness isolator[J]. Chinese Journal of Mechanical Engineering, 2013, 49(6): 89-94. (in Chinese)
|
[15] |
HAO Z F, CAO Q J. The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness[J]. Journal of Sound and Vibration, 2015, 340: 61-79. doi: 10.1016/j.jsv.2014.11.038
|
[16] |
LI Y, XU D. Vibration attenuation of high dimensional quasi-zero stiffness floating raft system[J]. International Journal of Mechanical Sciences, 2017, 126: 186-195. doi: 10.1016/j.ijmecsci.2017.03.029
|
[17] |
张华良, 瞿祖清, 傅志方. 浮筏隔振系统各主要参数对系统隔振性能的影响[J]. 振动与冲击, 2000, 19(2): 7-10.
ZHANG Hualiang, QU Zuqing, FU Zhifang. The effects of parameters of floating raft isolation system on its isolation characteristics[J]. Journal of Vibration and Shock, 2000, 19(2): 7-10. (in Chinese)
|
[18] |
MACHENS K U, DYER I. Energy partitioning in a truss structure[J]. The Journal of the Acoustical Society of America, 1995, 97(5): 3348.
|
[19] |
张峰, 许树浩, 俞孟萨. 桁架式浮筏隔振研究综述[C]//第十二届船舶水下噪声学术讨论会论文集. 长沙: 中国船舶科学研究中心《船舶力学》编辑部, 2009.
ZHANG Feng, XU Shuhao, YU Mengsa. Research of vibration isolation of truss floating raft[C]//Proceedings of the 12 th Symposium on Ship Underwater Noise. Changsha: Journal of Ship Mechanics Editorial Office, China Ship Science Research Center, 2009. (in Chinese)
|
[20] |
徐时吟. 舱筏隔振系统的精细化建模及高效筏架设计研究[D]. 博士学位论文. 上海: 上海交通大学, 2016.
XU Shiyin. Precise modelling of floating raft system and design of high-preformance raft[D]. PhD Thesis. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese)
|
[21] |
MIRONOV M A. Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval[J]. Soviet Physics Acoustics-USSR, 1988, 34(3): 318-319.
|
[22] |
PELAT A, GAUTIER F, CONLON S C, et al. The acoustic black hole: a review of theory and applications[J]. Journal of Sound and Vibration, 2020, 476: 115316. doi: 10.1016/j.jsv.2020.115316
|
[23] |
KRYLOV V V. Propagation of plate bending waves in the vicinity of one- and two-dimensional acoustic 'black holes'[C]//ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics & Earthquake Engineering. Rethymno, Crete, Greece, 2007.
|
[24] |
赵楠, 王禹, 陈林, 等. 分布式声学黑洞浮筏系统隔振性能研究[J]. 振动与冲击, 2022, 41(13): 75-80.
ZHAO Nan, WANG Yu, CHEN Lin, et al. Vibration isolation performance of distributed acoustic black hole floating raft system[J]. Journal of Vibration and Shock, 2022, 41(13): 75-80. (in Chinese)
|
[25] |
YANG G, SPENCER JR B F, CARLSON J D. Large-scale MR fluid dampers: modeling and dynamic performance considerations[J]. Engineering Structures, 2002, 24(3): 309-323. doi: 10.1016/S0141-0296(01)00097-9
|
[26] |
WILLIAMS K, CHIU G, BERNHARD R. Adaptive-passive absorbers using shape memory alloys[J]. Journal of Sound and Vibration, 2002, 249(5): 835-848. doi: 10.1006/jsvi.2000.3496
|
[27] |
黎崛珉, 陆泽琦, 陈立群. 非线性阻尼非线性刚度隔振系统随机动力学特性研究[J]. 应用数学和力学, 2017, 38(6): 613-621. doi: 10.21656/1000-0887.370277
LI Juemin, LU Zeqi, CHEN Liqun. An investigation on nonlinear-damping and nonlinear-stiffness vibration isolation systems under random excitations[J]. Applied Mathematics and Mechanics, 2017, 38(6): 613-621. (in Chinese) doi: 10.21656/1000-0887.370277
|
[28] |
SCHENK M, GUEST S D, HERDER J L. Zero stiffness tensegrity structures[J]. International Journal of Solids and Structures, 2007, 44(20): 6569-6583. doi: 10.1016/j.ijsolstr.2007.02.041
|
[29] |
CARRELLA A, BRENNAN M J, WATERS T P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound and Vibration, 2007, 301(3/5): 678-689.
|
[30] |
王心龙, 周加喜, 徐道临. 一类准零刚度隔振器的分段非线性动力学特性研究[J]. 应用数学和力学, 2014, 35(1): 50-62. doi: 10.3879/j.issn.1000-0887.2014.01.006
WANG Xinlong, ZHOU Jiaxi, XU Daolin. On piecewise nonlinear dynamic characteristics of a new-type quasi-zero-stiffness vibration isolator with cam-roller-spring mechanism[J]. Applied Mathematics and Mechanics, 2014, 35(1): 50-62. (in Chinese) doi: 10.3879/j.issn.1000-0887.2014.01.006
|
[31] |
张恒海. 发动机电磁式主动悬置隔振性能与自适应前馈控制研究[D]. 博士学位论文. 长春: 吉林大学, 2021.
ZHANG Henghai. Vibration isolation performance and adaptive feedforward control of electromagnetic active engine mount[D]. PhD Thesis. Changchun: Jilin University, 2021. (in Chinese)
|
[32] |
姜荣俊, 何琳. 有源振动噪声控制技术在潜艇中的应用研究[J]. 噪声与振动控制, 2005(2) : 1-6.
JIANG Rongjun, HE Lin. Application research of active noise and vibration control technology in submarines[J]. Noise and Vibration Control, 2005(2) : 1-6. (in Chinese)
|
[33] |
盖玉先, 董申. 振动主动控制中的作动器技术[J]. 航天工艺, 1999(6) : 45-48.
GAI Yuxian, DONG Shen. Actuator technology in the active vibration control[J]. Aerospace Technology, 1999(6) : 45-48. (in Chinese)
|
[34] |
王晓雷. 气动隔振器及八作动器隔振平台控制问题研究[D]. 博士学位论文. 哈尔滨: 哈尔滨工业大学, 2008.
WANG Xiaolei. Control of pneumatic isolator and octo-actuator vibration isolation platform[D]. PhD Thesis. Harbin: Harbin Institute of Technology, 2008. (in Chinese)
|
[35] |
PANDA P K, SAHOO B, THEJAS T S. High strain lead-free piezo ceramics for sensor and actuator applications: a review[J]. Sensors International, 2023, 4: 100226. doi: 10.1016/j.sintl.2022.100226
|
[36] |
GARDONIO P, TURCO E, KRAS A, et al. Semi-active vibration control unit tuned to maximise electric power dissipation[J]. Journal of Sound and Vibration, 2021, 499: 116000. doi: 10.1016/j.jsv.2021.116000
|
[37] |
WANG Z, MAK C M. Application of a movable active vibration control system on a floating raft[J]. Journal of Sound and Vibration, 2018, 414: 233-244. doi: 10.1016/j.jsv.2017.11.026
|
[38] |
HU K M, LI H. Multi-parameter optimization of piezoelectric actuators for multi-mode active vibration control of cylindrical shells[J]. Journal of Sound and Vibration, 2018, 426: 166-185. doi: 10.1016/j.jsv.2018.04.021
|
[39] |
陈学前, 汪小华, 阮剑华, 等. 两种独立模态空间控制法在柔性结构振动主动控制中的应用研究[J]. 中国科学技术大学学报, 2001, 31(6): 69-75.
CHEN Xueqian, WANG Xiaohua, RUAN Jianhua, et al. Study on two independent modal space control methods in the vibration active control of flexibe structure[J]. Journal of University of Science and Technology, 2001, 31(6): 69-75. (in Chinese)
|
[40] |
席裕庚, 李德伟. 预测控制定性综合理论的基本思路和研究现状[J]. 自动化学报, 2008, 34(10): 1225-1234.
XI Yugeng, LI Dewei. Fundamental philosophy and status of qualitative synthesis of model predictive control[J]. Acta Automatica Sinica, 2008, 34(10): 1225-1234. (in Chinese)
|
[41] |
BALAS M J. Direct velocity feedback control of large space structures[J]. Journal of Guidance and Control, 1979, 2(3): 252-253. doi: 10.2514/3.55869
|
[42] |
FANSON J, CAUGHEY T K. Positive position feedback control for large space structures[J]. AIAA Journal, 1990, 28(4): 717-724. doi: 10.2514/3.10451
|
[43] |
廖成毅, 杨颖, 吉宇人. 船舶动力定位控制策略研究综述[J]. 舰船科学技术, 2020, 42(17): 1-5.
LIAO Chengyi, YANG Ying, JI Yuren. Research on ship dynamic positioning control strategies[J]. Ship Science and Technology, 2020, 42(17): 1-5. (in Chinese)
|
[44] |
吕敬高. 推进电机振动噪声主动控制技术综述[J]. 船电技术, 2020, 40(11): 60-64.
LÜ Jinggao. Review of active vibration and noise control technology for marine propulsion motors[J]. Marine Electric & Electronic Engineering, 2020, 40(11): 60-64. (in Chinese)
|
[45] |
UDWADIA F E, VON B H, PHOHOMSIRI P. Time-delayed control design for active control of structures: principles and applications[J]. Structural Control & Health Monitoring, 2007, 14(1): 27-61.
|
[46] |
SONI T, DAS A S, DUTT J K. Active vibration control of ship mounted flexible rotor-shaft-bearing system during seakeeping[J]. Journal of Sound and Vibration, 2019, 467: 115046.
|
[47] |
MARINANGELI L, ALIJANI F, HOSSEINNIA S H. Fractional-order positive position feedback compensator for active vibration control of a smart composite plate[J]. Journal of Sound and Vibration, 2018, 412: 1-16. doi: 10.1016/j.jsv.2017.09.009
|
[48] |
袁明, 裘进浩, 季宏丽, 等. 基于同位加速度负反馈的振动主动控制研究[J]. 振动、测试与诊断, 2014, 34(2): 254-260.
YUAN Ming, QIU Jinhao, JI Hongli, et al. Active control of vibration using collocated negative acceleration feedback strategy[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(2): 254-260. (in Chinese)
|
[49] |
杨晨. 船舶浮筏隔振系统振动主动控制[D]. 硕士学位论文. 大连: 大连海事大学, 2012.
YANG Chen. Active vibration control of marine floating raft vibration isolation system[D]. Master Thesis. Dalian: Dalian Maritime University, 2012. (in Chinese)
|
[50] |
KAMARUZAMAN N A, ROBERTSON W S P, GHAYESH M H, et al. Six degree of freedom quasi-zero stiffness magnetic spring with active control: theoretical analysis of passive versus active stability for vibration isolation[J]. Journal of Sound and Vibration, 2021, 502: 116086. doi: 10.1016/j.jsv.2021.116086
|
[51] |
王俊芳, 张志谊. 自适应主动隔振中输出饱和抑制方法的仿真研究[J]. 系统仿真学报, 2010, 22(3): 674-677.
WANG Junfang, ZHANG Zhiyi. Simulation on method for output-saturation suppression in adaptive vibration isolation[J]. Journal of System Simulation, 2010, 22(3): 674-677. (in Chinese)
|
[52] |
曹斌芳. 自适应噪声抵消技术的研究[D]. 硕士学位论文. 长沙: 湖南大学, 2007.
CAO Binfang. Research on adaptive noise cancelling technology[D]. Master Thesis. Changsha: Hunan University, 2007. (in Chinese)
|
[53] |
张旻旻. 水下噪声低频线谱主动控制仿真及试验研究[D]. 硕士学位论文. 哈尔滨: 哈尔滨工程大学, 2018.
ZHANG Minmin. Underwater noise low frequency spectrum active control simulation and experimental research[D]. Master Thesis. Harbin: Harbin Engineering University, 2018. (in Chinese)
|
[54] |
吴磊. 船用柴油发电机组主被动复合隔振技术应用研究[D]. 博士学位论文. 哈尔滨: 哈尔滨工程大学, 2021.
WU Lei. Application research of active and passive hybrid vibration isolation technology for marine diesel generator set[D]. PhD Thesis. Harbin: Harbin Engineering University, 2021. (in Chinese)
|
[55] |
LI Y, HE L, SHUAI C G, et al. Improved hybrid isolator with maglev actuator integrated in air spring for active-passive isolation of ship machinery vibration[J]. Journal of Sound and Vibration, 2017, 407: 226-239. doi: 10.1016/j.jsv.2017.07.007
|
[56] |
马召召, 周瑞平, 杨庆超, 等. 船用主被动混合隔振器的自适应控制研究[J]. 船舶力学, 2023, 27(3): 446-455.
MA Zhaozhao, ZHOU Ruiping, YANG Qingchao, et al. Adaptive control of marine active-passive hybrid vibration isolators[J]. Journal of Ship Mechanics, 2023, 27(3): 446-455. (in Chinese)
|
[57] |
HASHEMINEJAD S M, KASAEISANI A. Smart hybrid active/semi-active distributed structural acoustic control of thin- and thick-walled piezo-sandwich bimorph spherical shellcloaks[J]. Journal of Sound and Vibration, 2023, 522: 117591.
|
[58] |
VIOLA G, SAUNDERS T, WEI X, et al. Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics[J]. Journal of Advanced Dielectrics, 2013, 3(1): 135007.
|
[59] |
TIGLI O F. Optimum vibration absorber (tuned mass damper) design for linear damped systems subjected to random loads[J]. Journal of Sound and Vibration, 2012, 331(13): 3035-3049. doi: 10.1016/j.jsv.2012.02.017
|
[60] |
DAVIS C L, LESIEUTRE G A. An actively tuned solid-state vibration absorber using capacitive shunting of piezoelectric stiffness[J]. Journal of Sound and Vibration, 2000, 232(3): 601-617. doi: 10.1006/jsvi.1999.2755
|
[61] |
VAURIGAUD B, SAVADKOOHI A T, LAMARQUE C. Targeted energy transfer with parallel nonlinear energy sinks, part Ⅰ: design theory and numerical results[J]. Nonlinear Dynamics, 2011, 66(4): 763-780. doi: 10.1007/s11071-011-9949-x
|
[62] |
WANG T, TANG Y, YANG T Z, et al. Bistable enhanced passive absorber based on integration of nonlinear energy sink with acoustic black hole beam[J]. Journal of Sound and Vibration, 2023, 544: 117409. doi: 10.1016/j.jsv.2022.117409
|
[63] |
SHENG H, HE M X, DING Q. Vibration suppression by mistuning acoustic black hole dynamic vibration absorbers[J]. Journal of Sound and Vibration, 2022, 542: 117370.
|
[64] |
孙斌, 吴志强. 基于非线性能量阱的双频激励非线性系统减振[J]. 应用数学和力学, 2017, 38(11): 1240-1250. doi: 10.21656/1000-0887.370379
SUN Bin, WU Zhiqiang. Vibration suppression of nonlinear systems under dual-frequency excitations with nonlinear energy sink[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1240-1250. (in Chinese) doi: 10.21656/1000-0887.370379
|
[65] |
傅涛. 电磁式主动吸振器的设计方法与试验研究[D]. 博士学位论文. 广州: 华南理工大学, 2019.
FU Tao. Research on design methodology and experiment of electromagnetic active dynamic vibration absorber[D]. PhD Thesis. Guangzhou: South China University of Technology, 2019. (in Chinese)
|
[66] |
KASSEM M, ZHICHUN Y, YINGSONG G, et al. Active dynamic vibration absorber for flutter suppression[J]. Journal of Sound and Vibration, 2020, 469: 115110. doi: 10.1016/j.jsv.2019.115110
|
[67] |
RASID S M R, MIZUNO T, ISHINO Y, et al. Design and control of active vibration isolation system with an active dynamic vibration absorber operating as accelerometer[J]. Journal of Sound and Vibration, 2019, 438 : 175-190. doi: 10.1016/j.jsv.2018.09.037
|
[68] |
杨志荣, 李清云, 戴乐阳, 等. 船用磁流变弹性体动力吸振器的性能研究[J]. 船舶力学, 2018, 22(4): 509-515.
YANG Zhirong, LI Qingyun, DAI Leyang, et al. Study on property of marine dynamic vibration absorber based on magneto-rheological elastomers[J]. Journal of Ship Mechanics, 2018, 22(4): 509-515. (in Chinese)
|
[69] |
李浩田, 王海芳, 李凌轩, 等. 空气-磁流变液半主动型动力吸振器的研究[J]. 机床与液压, 2022, 50(18): 1-5.
LI Haotian, WANG Haifang, LI Lingxian, et al. Study of air-MR semi-active dynamic vibration absorber[J]. Machine Tool & Hydraulics, 2022, 50(18): 1-5. (in Chinese)
|
[70] |
邢昭阳, 申永军, 邢海军, 等. 一种半主动负刚度动力吸振器[J]. 振动与冲击, 2021, 40(15): 123-128.
XING Zhaoyang, SHEN Yongjun, XING Haijun, et al. A semi-active negative stiffness dynamic vibration absorber[J]. Journal of Vibration and Shock, 2021, 40(15): 123-128. (in Chinese)
|
[71] |
王田. 变频变阻尼半主动式动力吸振器的研究与优化设计[D]. 硕士学位论文. 石家庄: 石家庄铁道大学, 2020.
WANG Tian. Research and optimization of a semi-active dynamic absorber with variable frequency and variable damping[D]. Master Thesis. Shijiazhuang: Shijiazhuang Tiedao University, 2020. (in Chinese)
|
[72] |
KECIK K. Assessment of energy harvesting and vibration mitigation of a pendulum dynamic absorber[J]. Mechanical Systems and Signal Processing, 2018, 106: 198-209. doi: 10.1016/j.ymssp.2017.12.028
|
[73] |
李凯翔, 李鹏, 周江贝. 频率自适应动力吸振器设计与控制策略[C]//中国力学大会. 杭州, 2019.
LI Kaixiang, LI Peng, ZHOU Jiangbei. Adaptive dynamic vibration absorber and its control strategy[C]//CCTAM 2019 . Hangzhou, 2019. (in Chinese)
|
[74] |
丁少虎. 水下有限长弹性圆柱壳振动声辐射有源控制[D]. 博士学位论文. 西安: 西北工业大学, 2015.
DING Shaohu. Active control of sound radiated from a submerged finite cylindrical shell[D]. PhD Thesis. Xi'an: Northwestern Polytechnical University, 2015. (in Chinese)
|
[75] |
杨晓一, 祁伟栋, 曹杰. 模态分析在浮筏隔振系统设计中的应用[J]. 船舶工程, 2022, 44(8): 1-6.
YANG Xiaoyi, QI Weidong, CAO Jie. Application of modal analysis in the floating raft isolation system design[J]. Ship Engineering, 2022, 44(8): 1-6. (in Chinese)
|
[76] |
刘硕. 船舶环境激励下的结构模态参数识别研究[D]. 硕士学位论文. 大连: 大连理工大学, 2011.
LIU Shuo. Study on identification of structure modal parameters based on the excitation of ship operational condition[D]. Master Thesis. Dalian: Dalian University of Technology, 2011. (in Chinese)
|
[77] |
李中付, 华宏星. 一种非稳态环境激励下线性结构的模态参数辨识方法[J]. 振动与冲击, 2008, 119(3): 8-12.
LI Zhongfu, HUA Hongxing. Modal parameters identification of linear structures undergo in non-stationary ambient excitation[J]. Journal of Vibration and Shock, 2008, 119(3): 8-12. (in Chinese)
|
[78] |
黄继嗣. 充液管路线谱噪声主动控制试验[J]. 船舶工程, 2022, 44(9): 76-81.
HUANG Jisi. Experimental on active control of line-spectrum noise in liquid-filled pipe[J]. Ship Engineering, 2022, 44(9): 76-81. (in Chinese)
|
[79] |
薛伟敏, 华宏星. 基于试验数据的频响函数综合法概述[J]. 噪声与振动控制, 2013, 33(4): 68-74.
XUE Weimin, HUA Hongxing. Review of FRF-based substructure method using experimental data[J]. Noise and Vibration Control, 2013, 33(4): 68-74. (in Chinese)
|
[80] |
黄修长, 徐时吟, 张志谊, 等. 基于频响函数综合的舱筏隔振系统灵敏度分析和优化[J]. 振动与冲击, 2011, 30(5): 145-151.
HUANG Xiuchang, XU Shiyin, ZHANG Zhiyi, et al. Design sensitivity analysis and optimization of a floating raft system using a FRF-based substructuring method[J]. Journal of Vibration and Shock, 2011, 30(5): 145-151. (in Chinese)
|
[81] |
高云剑, 黄修长, 华宏星. 基于频响函数综合的浮筏隔振系统误差传递分析[J]. 噪声与振动控制, 2013, 33(3): 39-43.
GAO Yunjian, HUANG Xiuchang, HUA Hongxing. Analysis of uncertainty propagation in floating raft system using FRF-based substructuring method[J]. Noise and Vibration Control, 2013, 33(3): 39-43. (in Chinese)
|
[82] |
况成玉, 张志谊, 华宏星. 周期桁架浮筏系统的隔振特性研究[J]. 振动与冲击, 2012, 31(2): 115-118.
KUANG Chengyu, ZHANG Zhiyi, HUA Hongxing. Vibration isolation characteristics analysis of a floating raft system constructed with periodic truss structures[J]. Journal of Vibration and Shock, 2012, 31(2): 115-118. (in Chinese)
|
[83] |
程世祥, 张志谊, 华宏星. 周期桁架结构浮筏隔振特性分析与实验研究[J]. 噪声与振动控制, 2011, 31(6): 5-9.
CHENG Shixiang, ZHANG Zhiyi, HUA Hongxing. Analysis and experiment on vibration isolation characteristics of a periodic truss raft system[J]. Noise and Vibration Control, 2011, 31(6): 5-9. (in Chinese)
|
[84] |
张峰. 空间桁架浮筏声学设计方法及降噪特性研究[D]. 博士学位论文. 北京: 中国舰船研究院, 2012.
ZHANG Feng. Acoustic design method and noise reduction performance analysis of space truss raft system[D]. PhD Thesis. Beijing: China Ship Research and Development Academy, 2012. (in Chinese)
|
[85] |
BOUTHIER O M, BERNHARD R J. Models of space-averaged energetics of plates[J]. AIAA Journal, 1992, 30(3): 616-622. doi: 10.2514/3.10964
|
[86] |
王占辉, 高俊吉. 一种开域静磁场双标量位混合有限元边界元法研究[J]. 船电技术, 2013, 33(6): 19-21.
WANG Zhanhui, GAO Junji. A hybrid finite element-boundary element method with double scalar potentials for open boundary magnetostatic problems[J]. Marine Electric & Electronic Engineering, 2013, 33(6): 19-21. (in Chinese)
|
[87] |
谭星星. 潜水装备内部基座阻抗分析及优化设计研究[D]. 硕士学位论文. 成都: 电子科技大学, 2022.
TAN Xingxing. Research on impedance analysis and optimization design of diving equipment internal base[D]. Master Thesis. Chengdu: University of Electronic Science and Technology of China, 2022. (in Chinese)
|
[88] |
王宇, 陈兴林, 李光民, 等. 船舶汽轮发电机组浮筏隔振系统建模及振动[J]. 海军工程大学学报, 2011, 23(6): 57-62.
WANG Yu, CHEN Xinglin, LI Guangmin, et al. Modeling of marine-generator and buoyant raft vibration isolation system and analysis of its vibration[J]. Journal of Naval University of Engineering, 2011, 23(6): 57-62. (in Chinese)
|
[89] |
杨东杰. 舱段典型机械结构振动传递特性研究[D]. 硕士学位论文. 哈尔滨: 哈尔滨工程大学, 2011.
YANG Dongjie. Research on vibration transfer characteristics of cabin typical mechanical structure[D]. Master Thesis. Harbin: Harbin Engineering University, 2011. (in Chinese)
|
[90] |
吴轶钢. 零阶能量有限元方法及其在船舶结构声辐射中的应用研究[D]. 博士学位论文. 武汉: 武汉理工大学, 2008.
WU Yigang. The research on zero-order energy flow analysis and its application in structural acoustic problems of ship structure[D]. PhD Thesis. Wuhan: Wuhan University of Technology, 2008. (in Chinese)
|
[91] |
方斌, 李瀚钦, 金哲民, 等. 水下结构声辐射FEM/BEM简化计算方法研究[J]. 海军工程大学学报, 2019, 31(1): 74-79.
FANG Bin, LI Hanqin, JIN Zhemin, et al. On simplified FEM/BEM method for acoustic radiation of underwater structures[J]. Journal of Naval University of Engineering, 2019, 31(1): 74-79. (in Chinese)
|
[92] |
ZHANG J, LIN W, DONG Y, et al. A double-layer interpolation method for implementation of BEM analysis of problems in potential theory[J]. Applied Mathematical Modelling, 2017, 51: 250-269. doi: 10.1016/j.apm.2017.06.044
|
[93] |
ZOU M, TANG H, LIU S. Modeling and calculation of acoustic radiation of underwater stiffened cylindrical shells treated with local damping[J]. Marine Structures, 2023, 88: 103366. doi: 10.1016/j.marstruc.2022.103366
|
[94] |
刘涛, 汤渭霖, 何世平. 数值/解析混合方法计算含复杂结构的有限长圆柱壳体声辐射[J]. 船舶力学, 2003, 7(4) : 99-104.
LIU Tao, TANG Weilin, HE Shiping. Computation of sound radiation from complicated cylindrical shell by using numerical analytical matching method[J]. Journal of Ship Mechanics, 2003, 7(4) : 99-104. (in Chinese)
|
[95] |
刘见华, 金咸定. 结构声传递数值计算方法的研究进展[J]. 振动与冲击, 2002, 21(4) : 46-51.
LIU Jianhua, JIN Xianding. Reaearch advances of numerical computing methods for structure-borne propagation[J]. Journal of Vibration and Shock, 2002, 21(4) : 46-51. (in Chinese)
|
[96] |
李志远, 彭子龙, 温华兵, 等. 浮筏筏体结构改进设计及隔振性能分析[J]. 噪声与振动控制, 2019, 39(5): 245-249.
LI Zhiyuan, PENG Zilong, WEN Huabin, et al. Analysis of vibration isolation performance for an improved floating raft structure[J]. Noise and Vibration Control, 2019, 39(5): 245-249. (in Chinese)
|
[97] |
吴江海, 苏明珠, 席亦农, 等. 基于TPA的船舶机械系统振动传递特性分析[J]. 振动、测试与诊断, 2023, 43(1): 139-143.
WU Jianghai, SU Mingzhu, XI Yinong, et al. Analysis of vibration transmission characteristics of ship mechanical system based on TPA[J]. Journal of Vibration, Measurement & Diagnosis, 2023, 43(1): 139-143. (in Chinese)
|
[98] |
邹涛, 洪明. 浮筏隔振系统振动能量传递研究[C]//第十八届船舶水下噪声学术讨论会论文集. 昆明: 中国船舶科学研究中心《船舶力学》编辑部, 2021: 955-962.
ZOU Tao, HONG Ming. Research on vibration energy transfer of floating raft vibration isolation system[C]//Proceedings of the 18 th Symposium on Ship Underwater Noise. Kunming: Journal of Ship Mechanics Editorial Office, China Ship Science Research Center, 2021: 955-962. (in Chinese)
|