Volume 45 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
WANG Xinte, LIU Juan, HU Biao, ZHANG Bo, SHEN Huoming. Wave Propagation in Functionally Graded Piezoelectric Nanoshells[J]. Applied Mathematics and Mechanics, 2024, 45(2): 197-207. doi: 10.21656/1000-0887.440057
Citation: WANG Xinte, LIU Juan, HU Biao, ZHANG Bo, SHEN Huoming. Wave Propagation in Functionally Graded Piezoelectric Nanoshells[J]. Applied Mathematics and Mechanics, 2024, 45(2): 197-207. doi: 10.21656/1000-0887.440057

Wave Propagation in Functionally Graded Piezoelectric Nanoshells

doi: 10.21656/1000-0887.440057
  • Received Date: 2023-03-06
  • Rev Recd Date: 2023-05-03
  • Publish Date: 2024-02-01
  • The waves propagation characteristics in porous functionally graded piezoelectric nanoshells were investigated based on the nonlocal strain gradient theory. The governing equations were developed under Hamilton's principle and the 1st-order shear theory. The scale-dependent characteristic equations were obtained through combination of the nonlocal strain gradient theory and the harmonic solutions. The effects of the scale parameter, the wave number, the gradient index, the thickness, the porosity and the voltage on the wave propagation characteristics were discussed numerically. The results show that, the influences of the nonlocal parameter and the strain gradient parameter on the wave propagation frequency are closely related to the wave number, and the larger the wave number is in a certain range, the greater the influence of scale parameters on the frequency will be. In addition, the porosity and the gradient index have a coupling effect on the frequency.
  • loading
  • [1]
    夏巍, 冯浩成. 热过屈曲功能梯度壁板的气动弹性颤振[J]. 力学学报, 2016, 48(3): 609-614. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201603010.htm

    XIA Wei, FENG Haocheng. Aeroelastic flutter of post-buckled functionally graded panels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 609-614. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201603010.htm
    [2]
    NAN Z, XIE Z, SHIJIE Z, et al. Size-dependent static bending and free vibration analysis of porous functionally graded piezoelectric nanobeams[J]. Smart Materials and Structures, 2020, 29(4): 045025. doi: 10.1088/1361-665X/ab73e4
    [3]
    VASHISHTH A K, BAREJA U. Analysis of Love waves propagation in a functionally graded porous piezoelectric composite structure[J/OL]. Waves in Random and Complex Media, 2022: 1-32[2023-05-03]. https://doi.org/10.1080/17455030.2022.2037786.
    [4]
    陈明飞, 刘坤鹏, 靳国永, 等. 面内功能梯度三角形板等几何面内振动分析[J]. 应用数学和力学, 2020, 41(2): 156-170. doi: 10.21656/1000-0887.400171

    CHEN Mingfei, LIU Kunpeng, JIN Guoyong, et al. Isogeometric in-plane vibration analysis of functionally graded triangular plates[J]. Applied Mathematics and Mechanics, 2020, 41(2): 156-170. (in Chinese) doi: 10.21656/1000-0887.400171
    [5]
    FARAJPOUR A, GHAYESH M H, FAROKHI H. A review on the mechanics of nanostructures[J]. International Journal of Engineering Science, 2018, 133: 231-263. doi: 10.1016/j.ijengsci.2018.09.006
    [6]
    王平远, 李成, 姚林泉. 基于非局部应变梯度理论功能梯度纳米板的弯曲和屈曲研究[J]. 应用数学和力学, 2021, 42(1): 15-26. doi: 10.21656/1000-0887.410188

    WANG Pingyuan, LI Cheng, YAO Linquan. Bending and buckling of functionally graded nanoplates based on the nonlocal strain gradient theory[J]. Applied Mathematics and Mechanics, 2021, 42(1): 15-26. (in Chinese) doi: 10.21656/1000-0887.410188
    [7]
    ERINGEN A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of Applied Physics, 1983, 54(9): 4703-4710. doi: 10.1063/1.332803
    [8]
    WANG Y Q, LIANG C, ZU J W. Wave propagation in functionally graded cylindrical nanoshells based on nonlocal Flügge shell theory[J]. The European Physical Journal Plus, 2019, 134(5): 1-15.
    [9]
    ARANI A G, BARZOKI A A M, KOLAHCHI R, et al. Pasternak foundation effect on the axial and torsional waves propagation in embedded DWCNTs using nonlocal elasticity cylindrical shell theory[J]. Journal of Mechanical Science and Technology, 2011, 25(9): 2385-2391. doi: 10.1007/s12206-011-0712-5
    [10]
    WANG Q, VARADAN V K. Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes[J]. Smart Materials and Structures, 2007, 16(1): 178-190. doi: 10.1088/0964-1726/16/1/022
    [11]
    KUANG Y D, HE X Q, CHEN C Y, et al. Analysis of nonlinear vibrations of double-walled carbon nanotubes conveying fluid[J]. Computational Materials Science, 2009, 45(4): 875-880. doi: 10.1016/j.commatsci.2008.12.007
    [12]
    MA Q, CLARKE D R. Size dependent hardness of silver single crystals[J]. Journal of Materials Research, 1995, 10(4): 853-863. doi: 10.1557/JMR.1995.0853
    [13]
    MC ELHANEY K W, VLASSAK J J, NIX W D. Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments[J]. Journal of Materials Research, 1998, 13(5): 1300-1306. doi: 10.1557/JMR.1998.0185
    [14]
    徐晓建, 邓子辰. 基于简化的应变梯度理论下Kirchhoff板模型边值问题的提法及其应用[J]. 应用数学和力学, 2022, 43(4): 363-373. doi: 10.21656/1000-0887.420286

    XU Xiaojian, DENG Zichen. Boundary value problems of a Kirchhoff type plate model based on the simplified strain gradient elasticity and the application[J]. Applied Mathematics and Mechanics, 2022, 43(4): 363-373. (in Chinese) doi: 10.21656/1000-0887.420286
    [15]
    LIM C W, ZHANG G, REDDY J N. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation[J]. Journal of the Mechanics and Physics of Solids, 2015, 78: 298-313. doi: 10.1016/j.jmps.2015.02.001
    [16]
    MA L H, KE L L, REDDY J N, et al. Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient theory[J]. Composite Structures, 2018, 199: 10-23. doi: 10.1016/j.compstruct.2018.05.061
    [17]
    WANG P Y, LI C, LI S, et al. A variational approach for free vibrating micro-rods with classical and non-classical new boundary conditions accounting for nonlocal strengthening and temperature effects[J]. Journal of Thermal Stresses, 2020, 43(4): 421-439. doi: 10.1080/01495739.2020.1722048
    [18]
    WANG P Y, LI C, LI S. Bending vertically and horizontally of compressive nano-rods subjected to nonlinearly distributed loads using a continuum theoretical approach[J]. Journal of Vibration Engineering & Technologies, 2020, 8(6): 947-957.
    [19]
    SHEN J P, WANG P Y, LI C, et al. New observations on transverse dynamics of microtubules based on nonlocal strain gradient theory[J]. Composite Structures, 2019, 225: 111036. doi: 10.1016/j.compstruct.2019.111036
    [20]
    SHARIFI Z, KHORDAD R, GHARAATI A, et al. An analytical study of vibration in functionally graded piezoelectric nanoplates: nonlocal strain gradient theory[J]. Applied Mathematics and Mechanics(English Edition), 2019, 40(12): 1723-1740. doi: 10.1007/s10483-019-2545-8
    [21]
    MEHRALIAN F, BENI Y T. Vibration analysis of size-dependent bimorph functionally graded piezoelectric cylindrical shell based on nonlocal strain gradient theory[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(1): 27. doi: 10.1007/s40430-017-0938-y
    [22]
    LIU Y F, WANG Y Q. Thermo-electro-mechanical vibrations of porous functionally graded piezoelectric nanoshells[J]. Nanomaterials(Basel), 2019, 9(2): 301. doi: 10.3390/nano9020301
    [23]
    WANG Y Q, LIU Y F, ZU J W. Analytical treatment of nonlocal vibration of multilayer functionally graded piezoelectric nanoscale shells incorporating thermal and electrical effect[J]. The European Physical Journal Plus, 2019, 134(2): 1-15.
    [24]
    LONG H, MA H S, WEI Y G, et al. A size-dependent model for predicting the mechanical behaviors of adhesively bonded layered structures based on strain gradient elasticity[J]. International Journal of Mechanical Sciences, 2021, 198: 106348. doi: 10.1016/j.ijmecsci.2021.106348
    [25]
    BARATI M R, ZENKOUR A M. Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions[J]. Journal of Vibration and Control, 2016, 24(10): 1910-1926.
    [26]
    ISMAIL E, RAMAZAN Ö. Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity[J]. Composite Structures, 2022, 296: 115878. doi: 10.1016/j.compstruct.2022.115878
    [27]
    FALEH N M, AHMED R A, FENJAN R M. On vibrations of porous FG nanoshells[J]. International Journal of Engineering Science, 2018, 133: 1-14. doi: 10.1016/j.ijengsci.2018.08.007
    [28]
    SAFARPOUR H, ALI GHANIZADEH S, HABIBI M. Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory[J]. The European Physical Journal Plus, 2018, 133(12): 1-17.
    [29]
    YANG J. Special Topics in the Theory of Piezoelectricity[M]. Springer Science & Business Media, 2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (266) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return