Citation: | WANG Xinte, LIU Juan, HU Biao, ZHANG Bo, SHEN Huoming. Wave Propagation in Functionally Graded Piezoelectric Nanoshells[J]. Applied Mathematics and Mechanics, 2024, 45(2): 197-207. doi: 10.21656/1000-0887.440057 |
[1] |
夏巍, 冯浩成. 热过屈曲功能梯度壁板的气动弹性颤振[J]. 力学学报, 2016, 48(3): 609-614. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201603010.htm
XIA Wei, FENG Haocheng. Aeroelastic flutter of post-buckled functionally graded panels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 609-614. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201603010.htm
|
[2] |
NAN Z, XIE Z, SHIJIE Z, et al. Size-dependent static bending and free vibration analysis of porous functionally graded piezoelectric nanobeams[J]. Smart Materials and Structures, 2020, 29(4): 045025. doi: 10.1088/1361-665X/ab73e4
|
[3] |
VASHISHTH A K, BAREJA U. Analysis of Love waves propagation in a functionally graded porous piezoelectric composite structure[J/OL]. Waves in Random and Complex Media, 2022: 1-32[2023-05-03].
|
[4] |
陈明飞, 刘坤鹏, 靳国永, 等. 面内功能梯度三角形板等几何面内振动分析[J]. 应用数学和力学, 2020, 41(2): 156-170. doi: 10.21656/1000-0887.400171
CHEN Mingfei, LIU Kunpeng, JIN Guoyong, et al. Isogeometric in-plane vibration analysis of functionally graded triangular plates[J]. Applied Mathematics and Mechanics, 2020, 41(2): 156-170. (in Chinese) doi: 10.21656/1000-0887.400171
|
[5] |
FARAJPOUR A, GHAYESH M H, FAROKHI H. A review on the mechanics of nanostructures[J]. International Journal of Engineering Science, 2018, 133: 231-263. doi: 10.1016/j.ijengsci.2018.09.006
|
[6] |
王平远, 李成, 姚林泉. 基于非局部应变梯度理论功能梯度纳米板的弯曲和屈曲研究[J]. 应用数学和力学, 2021, 42(1): 15-26. doi: 10.21656/1000-0887.410188
WANG Pingyuan, LI Cheng, YAO Linquan. Bending and buckling of functionally graded nanoplates based on the nonlocal strain gradient theory[J]. Applied Mathematics and Mechanics, 2021, 42(1): 15-26. (in Chinese) doi: 10.21656/1000-0887.410188
|
[7] |
ERINGEN A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of Applied Physics, 1983, 54(9): 4703-4710. doi: 10.1063/1.332803
|
[8] |
WANG Y Q, LIANG C, ZU J W. Wave propagation in functionally graded cylindrical nanoshells based on nonlocal Flügge shell theory[J]. The European Physical Journal Plus, 2019, 134(5): 1-15.
|
[9] |
ARANI A G, BARZOKI A A M, KOLAHCHI R, et al. Pasternak foundation effect on the axial and torsional waves propagation in embedded DWCNTs using nonlocal elasticity cylindrical shell theory[J]. Journal of Mechanical Science and Technology, 2011, 25(9): 2385-2391. doi: 10.1007/s12206-011-0712-5
|
[10] |
WANG Q, VARADAN V K. Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes[J]. Smart Materials and Structures, 2007, 16(1): 178-190. doi: 10.1088/0964-1726/16/1/022
|
[11] |
KUANG Y D, HE X Q, CHEN C Y, et al. Analysis of nonlinear vibrations of double-walled carbon nanotubes conveying fluid[J]. Computational Materials Science, 2009, 45(4): 875-880. doi: 10.1016/j.commatsci.2008.12.007
|
[12] |
MA Q, CLARKE D R. Size dependent hardness of silver single crystals[J]. Journal of Materials Research, 1995, 10(4): 853-863. doi: 10.1557/JMR.1995.0853
|
[13] |
MC ELHANEY K W, VLASSAK J J, NIX W D. Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments[J]. Journal of Materials Research, 1998, 13(5): 1300-1306. doi: 10.1557/JMR.1998.0185
|
[14] |
徐晓建, 邓子辰. 基于简化的应变梯度理论下Kirchhoff板模型边值问题的提法及其应用[J]. 应用数学和力学, 2022, 43(4): 363-373. doi: 10.21656/1000-0887.420286
XU Xiaojian, DENG Zichen. Boundary value problems of a Kirchhoff type plate model based on the simplified strain gradient elasticity and the application[J]. Applied Mathematics and Mechanics, 2022, 43(4): 363-373. (in Chinese) doi: 10.21656/1000-0887.420286
|
[15] |
LIM C W, ZHANG G, REDDY J N. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation[J]. Journal of the Mechanics and Physics of Solids, 2015, 78: 298-313. doi: 10.1016/j.jmps.2015.02.001
|
[16] |
MA L H, KE L L, REDDY J N, et al. Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient theory[J]. Composite Structures, 2018, 199: 10-23. doi: 10.1016/j.compstruct.2018.05.061
|
[17] |
WANG P Y, LI C, LI S, et al. A variational approach for free vibrating micro-rods with classical and non-classical new boundary conditions accounting for nonlocal strengthening and temperature effects[J]. Journal of Thermal Stresses, 2020, 43(4): 421-439. doi: 10.1080/01495739.2020.1722048
|
[18] |
WANG P Y, LI C, LI S. Bending vertically and horizontally of compressive nano-rods subjected to nonlinearly distributed loads using a continuum theoretical approach[J]. Journal of Vibration Engineering & Technologies, 2020, 8(6): 947-957.
|
[19] |
SHEN J P, WANG P Y, LI C, et al. New observations on transverse dynamics of microtubules based on nonlocal strain gradient theory[J]. Composite Structures, 2019, 225: 111036. doi: 10.1016/j.compstruct.2019.111036
|
[20] |
SHARIFI Z, KHORDAD R, GHARAATI A, et al. An analytical study of vibration in functionally graded piezoelectric nanoplates: nonlocal strain gradient theory[J]. Applied Mathematics and Mechanics(English Edition), 2019, 40(12): 1723-1740. doi: 10.1007/s10483-019-2545-8
|
[21] |
MEHRALIAN F, BENI Y T. Vibration analysis of size-dependent bimorph functionally graded piezoelectric cylindrical shell based on nonlocal strain gradient theory[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(1): 27. doi: 10.1007/s40430-017-0938-y
|
[22] |
LIU Y F, WANG Y Q. Thermo-electro-mechanical vibrations of porous functionally graded piezoelectric nanoshells[J]. Nanomaterials(Basel), 2019, 9(2): 301. doi: 10.3390/nano9020301
|
[23] |
WANG Y Q, LIU Y F, ZU J W. Analytical treatment of nonlocal vibration of multilayer functionally graded piezoelectric nanoscale shells incorporating thermal and electrical effect[J]. The European Physical Journal Plus, 2019, 134(2): 1-15.
|
[24] |
LONG H, MA H S, WEI Y G, et al. A size-dependent model for predicting the mechanical behaviors of adhesively bonded layered structures based on strain gradient elasticity[J]. International Journal of Mechanical Sciences, 2021, 198: 106348. doi: 10.1016/j.ijmecsci.2021.106348
|
[25] |
BARATI M R, ZENKOUR A M. Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions[J]. Journal of Vibration and Control, 2016, 24(10): 1910-1926.
|
[26] |
ISMAIL E, RAMAZAN Ö. Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity[J]. Composite Structures, 2022, 296: 115878. doi: 10.1016/j.compstruct.2022.115878
|
[27] |
FALEH N M, AHMED R A, FENJAN R M. On vibrations of porous FG nanoshells[J]. International Journal of Engineering Science, 2018, 133: 1-14. doi: 10.1016/j.ijengsci.2018.08.007
|
[28] |
SAFARPOUR H, ALI GHANIZADEH S, HABIBI M. Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory[J]. The European Physical Journal Plus, 2018, 133(12): 1-17.
|
[29] |
YANG J. Special Topics in the Theory of Piezoelectricity[M]. Springer Science & Business Media, 2010.
|