Citation: | HU Yuda, LIAO Feng. A Magnetoelastic Coupling Dynamical Model for Functional Gradient Shells Under Magnetic Field Actions[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1341-1353. doi: 10.21656/1000-0887.440048 |
[1] |
沈惠申. 功能梯度复合材料板壳结构的弯曲、屈曲和振动[J]. 力学进展, 2004, 34(1): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200401006.htm
SHEN Huishen. Bending, buckling and vibration of functionally graded plates and shells[J]. Advances in Mechanics, 2004, 34(1): 53-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200401006.htm
|
[2] |
YANG B, CHEN W Q, DING H J. Approximate elasticity solutions for functionally graded circular plates subject to a concentrated force at the center[J]. Mathematics and Mechanics of Solids, 2014, 19(3): 277-288. doi: 10.1177/1081286512463572
|
[3] |
LIU N W, SUN Y L, CHEN W Q, et al. 3D elasticity solutions for stress field analysis of FGM circular plates subject to concentrated edge forces and couples[J]. Acta Mechanica, 2019, 230(8): 2655-2668. doi: 10.1007/s00707-019-02412-z
|
[4] |
YOUSEFITABAR M, MATAPOURI M K. Thermally induced buckling of thin annular FGM plates[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39(1): 969-980.
|
[5] |
TRABELSI S, FRIKHA A, ZGHAL S, et al. Thermal post-buckling analysis of functionally graded material structures using a modified FSDT[J]. International Journal of Mechanical Sciences, 2018, 144(8): 74-89.
|
[6] |
CHAN D Q, LONG V D, DUC N D. Nonlinear buckling and postbuckling of FGM shear-deformable truncated conical shells reinforced by FGM stiffeners[J]. Mechanics of Composite Materials, 2019, 54(6): 745-764. doi: 10.1007/s11029-019-9780-x
|
[7] |
曹志远. 不同条件功能梯度矩形板固有频率解的一般表达式[J]. 复合材料学报, 2005, 22(5): 172-177. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE200505028.htm
CAO Zhiyuan. Unified expression of natural frequency solutions for functionally graded composite rectangular plates under various boundary conditions[J]. Acta Materiae Compositae Sinica, 2005, 22(5): 172-177. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE200505028.htm
|
[8] |
TU T M, QUOC T H, VAN-LONG N. Vibration analysis of functionally graded plates using the eight-unknown higher order shear deformation theory in thermal environments[J]. Aerospace Science and Technology, 2018, 84(5): 698-711.
|
[9] |
HU Y D, ZHANG Z Q. The bifurcation analysis on the circular functionally graded plate with combination resonances[J]. Nonlinear Dynamics, 2012, 67(3): 1779-1790. doi: 10.1007/s11071-011-0105-4
|
[10] |
ZHANG W, HAO Y X, YANG J. Nonlinear dynamics of FGM circular cylindrical shell with clamped-clamped edges[J]. Composite Structures, 2012, 94(3): 1075-1086. doi: 10.1016/j.compstruct.2011.11.004
|
[11] |
AN F X, CHEN F Q. Multi-pulse chaotic motions of functionally graded truncated conical shell under complex loads[J]. Nonlinear Dynamics, 2017, 89(3): 1753-1778. doi: 10.1007/s11071-017-3550-x
|
[12] |
SAHU N K, BISWAL D K, JOSEPH S V, et al. Vibration and damping analysis of doubly curved viscoelastic-FGM sandwich shell structures using FOSDT[J]. Structures, 2020, 26: 24-38. doi: 10.1016/j.istruc.2020.04.007
|
[13] |
LI X, DU C C, LI Y H. Parametric resonance of a FG cylindrical thin shell with periodic rotating angular speeds in thermal environment[J]. Applied Mathematical Modelling, 2018, 59(7): 393-409.
|
[14] |
ZHANG D G, ZHOU Y H. A theoretical analysis of FGM thin plates based on physical neutral surface[J]. Computational Materials Science, 2008, 44(2): 716-720. doi: 10.1016/j.commatsci.2008.05.016
|
[15] |
ZHANG D G. Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory[J]. Composite Structure, 2013, 100: 121-126. doi: 10.1016/j.compstruct.2012.12.024
|
[16] |
ZHANG D G. Nonlinear static analysis of FGM infinite cylindrical shallow shells based on physical neutral surface and high order shear deformation theory[J]. Applied Mathematical Modelling, 2015, 39(5/6): 1587-1596.
|
[17] |
MIYA K, HARA K, SOMEYA K. Experimental and theoretical study on magnetoelastic buckling of a ferromagnetic cantilevered beam-plate[J]. Journal of Applied Mechanics, 1978, 45(2): 355-360. doi: 10.1115/1.3424301
|
[18] |
刘旭, 姚林泉. 热环境中旋转功能梯度纳米环板的振动分析[J]. 应用数学和力学, 2020, 41(11): 1224-1236. doi: 10.21656/1000-0887.410090
LIU Xu, YAO Linquan. Vibration analysis of rotating functionally gradient nano annular plates in thermal environment[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1224-1236. (in Chinese) doi: 10.21656/1000-0887.410090
|
[19] |
陈明飞, 刘坤鹏, 靳国永, 等. 面内功能梯度三角形板等几何面内振动分析[J]. 应用数学和力学, 2020, 41(2): 156-170. doi: 10.21656/1000-0887.400171
CHEN Mingfei, LIU Kunpeng, JIN Guoyong, et al. Isogeometric in-plane vibration analysis of functionally graded triangular plates[J]. Applied Mathematics and Mechanics, 2020, 41(2): 156-170. (in Chinese) doi: 10.21656/1000-0887.400171
|
[20] |
WANG X Z, LEE J S, ZHENG X J. Magneto-thermo-elastic instability of ferromagnetic plates in thermal and magnetic fields[J]. International Journal of Solids and Structures, 2003, 40(22): 6125-6142. doi: 10.1016/S0020-7683(03)00297-X
|
[21] |
MOHAJERANI S A, MOHAMMADZADEH A, NIKKHAH-BAHRAMI M N. An exact solution for vibration analysis of soft ferromagnetic rectangular plates under the influence of magnetic field with levy type boundary conditions[J]. Journal of Solid Mechanics, 2017, 9(1): 186-197.
|
[22] |
胡宇达, 张金志. 轴向运动载流导电板磁热弹性耦合动力学方程[J]. 力学学报, 2013, 45(5): 792-796. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201305020.htm
HU Yuda, ZHANG Jinzhi. Magneto-thermo-elastic coupled dynamics equations of axially moving carry current plate in magnetic field[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 792-796. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201305020.htm
|
[23] |
HU Y D, CAO T X, XIE M X. Magnetic-structure coupling dynamic model of a ferromagnetic plate parallel moving in air-gap magnetic field[J]. Acta Mechanica Sinica, 2022, 38(10): 522084. doi: 10.1007/s10409-022-22084-x
|
[24] |
胡宇达, 刘超. 线载和弹性支承作用面内运动薄板磁固耦合双重共振[J]. 应用数学和力学, 2021, 42(7): 713-722. doi: 10.21656/1000-0887.410202
HU Yuda, LIU Chao. Double resonance of magnetism-solid coupling of in-plane moving thin plates with linear loads and elastic supports[J]. Applied Mathematics and Mechanics, 2021, 42(7): 713-722. (in Chinese) doi: 10.21656/1000-0887.410202
|
[25] |
沈璐璐, 蔡方圆, 杨博. 功能梯度压电板柱面弯曲的弹性力学解[J]. 应用数学和力学, 2023, 44(3): 272-281. doi: 10.21656/1000-0887.430224
SHEN Lulu, CAI Fangyuan, YANG Bo. Elasticity solutions for cylindrical bending of functionally graded piezoelectric material plates[J]. Applied Mathematics and Mechanics, 2023, 44(3): 272-281. (in Chinese) doi: 10.21656/1000-0887.430224
|
[26] |
MIKILYANA M, MARZOCCA P. Dynamic instability of electroconductive cylindrical shell in a magneticfield[J]. International Journal of Solids and Structures, 2019, 160: 168-176.
|
[27] |
MOLCHENKO L V, LOOS I I, VASILEVA L Y, et al. Magnetoelastic deformation of isotropic variable-stiffness shells of revolution: allowing for joule heat and geometrical nonlinearity[J]. International Applied Mechanics, 2020, 56(2): 198-207.
|
[28] |
LI Z, WANG Q S, QIN B, et al. Vibration and acoustic radiation of magneto-electro-thermo- elastic functionally graded porous plates in the multi-physics fields[J]. International Journal of Mechanical Sciences, 2020, 185(11): 105850.
|
[29] |
MEHDITABAR A, RAHIMI G H, ANSARI-SADRABADI S. Three-dimensional magneto-thermo-elastic analysis of functionally graded cylindrical shell[J]. Applied Mathematics and Mechanics(English Edition), 2017, 38(4): 479-494.
|
[30] |
LIU Y F, QIN Z Y, CHU F L. Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanicalloads[J]. International Journal of Mechanical Sciences, 2021, 201: 106474.
|
[31] |
DU C C, LI Y H. Nonlinear resonance behavior of functionally graded cylindrical shells in thermal environments[J]. Composite Structures, 2013, 102(8): 164-174.
|
[32] |
ZHANG D G, ZHOU Y H. A theoretical analysis of FGM thin plates based on physical neutralsurface[J]. Computational Materials Science, 2009, 44(2): 716-720.
|
[33] |
梁斌, 项爽, 李戎, 等. 旋转功能梯度圆柱壳振动影响因素研究[J]. 船舶力学, 2013, 17(12): 1460-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201312010.htm
LIANG Bin, XIANG Shuang, LI Rong, et al. Study of effective factors for the vibration of rotating functionally graded cylindrical shells[J]. Journal of Ship Mechanics, 2013, 17(12): 1460-1472. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201312010.htm
|
[34] |
SHEN H S. Nonlinear vibration of shear deformable FGM cylindrical shells surrounded by an elasticmedium[J]. Composite Structures, 2012, 94(3): 1144-1154.
|
[35] |
LOY C T, LAM K Y, REDDY J N. Vibration of functionally graded cylindricalshells[J]. International Journal of Mechanical Sciences, 1999, 41(3): 309-324.
|