Volume 44 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
DONG Fangfang, YANG Chao, HAN Jiang, ZHANG Xinrong. A Hierarchical Aggregation Modelling Method for Mobile Manipulators[J]. Applied Mathematics and Mechanics, 2023, 44(12): 1473-1490. doi: 10.21656/1000-0887.440025
Citation: DONG Fangfang, YANG Chao, HAN Jiang, ZHANG Xinrong. A Hierarchical Aggregation Modelling Method for Mobile Manipulators[J]. Applied Mathematics and Mechanics, 2023, 44(12): 1473-1490. doi: 10.21656/1000-0887.440025

A Hierarchical Aggregation Modelling Method for Mobile Manipulators

doi: 10.21656/1000-0887.440025
  • Received Date: 2023-02-02
  • Rev Recd Date: 2023-08-06
  • Publish Date: 2023-12-01
  • The coupling effects of mobile manipulators on the motion characteristics of mobile platforms during the dynamic operation process, would increase the complexity and nonlinearity of the whole system and then bring great challenges to the system modelling. A new hierarchical aggregation modelling method was proposed to solve this issue. The method is based on the hierarchical properties of the Udwadia-Kalaba (UK) theory in the analytical mechanics. First, the mobile manipulator was divided into 3 subsystems, and the unconstrained dynamics of each one was modelled with the Lagrangian equations. Subsequently, the basic Udwadia-Kalaba equations (UKE) were employed to model the overall system, in view of the constraints within the mechanical structure of the mobile manipulator. In addition, the Lyapunov stability-based theory was used to compensate for the initial condition deviations to achieve convergence of the ideal trajectory. Simulation results validate the feasibility of the proposed modelling method.
  • loading
  • [1]
    罗欣, 丁晓军. 地面移动作业机器人运动规划与控制研究综述[J]. 哈尔滨工业大学学报, 2021, 53(1): 1-15.

    LUO Xin, DING Xiaojun. Research and prospective on motion planning and control of ground mobile manipulators[J]. Journal of Harbin Institute of Technology, 2021, 53(1): 1-15. (in Chinese)
    [2]
    TANG C P, MILLER P T, KROVI V N, et al. Differential-flatness-based planning and control of a wheeled mobile manipulator: theory and experiment[J]. IEEE/ASME Transactions on Mechatronics, 2010, 16(4): 768-773.
    [3]
    LIU Y, LIU G. Interaction analysis and online tip-over avoidance for a reconfigurable tracked mobile modular manipulator negotiating slopes[J]. IEEE/ASME Transactions on Mechatronics, 2009, 15(4): 623-635.
    [4]
    ZHONG G, KOBAYASHI Y, HOSHINO Y, et al. System modeling and tracking control of mobile manipulator subjected to dynamic interaction and uncertainty[J]. Nonlinear Dynamics, 2013, 73(1): 167-182.
    [5]
    VIET T D, DOAN P T, HUNG N, et al. Tracking control of a three-wheeled omnidirectional mobile manipulator system with disturbance and friction[J]. Journal of Mechanical Science and Technology, 2012, 26(7): 2197-2211. doi: 10.1007/s12206-012-0541-1
    [6]
    KORAYEM M H, ESFEDEN R A, NEKOO S R. Path planning algorithm in wheeled mobile manipulators based on motion of arms[J]. Journal of Mechanical Science and Technology, 2015, 29(4): 1753-1763. doi: 10.1007/s12206-015-0349-x
    [7]
    TAN X W, ZHAO D B, YI J. Motion control of omnidirectional mobile manipulators, part Ⅰ: modeling and control[J]. Journal of Mechanical Engineering, 2009, 45(1): 35-41. doi: 10.3901/JME.2009.01.035
    [8]
    LI Z, YANG C, TANG Y. Decentralised adaptive fuzzy control of coordinated multiple mobile manipulators interacting with non-rigid environments[J]. IET Control Theory & Applications, 2013, 7(3): 397-410.
    [9]
    LIU K, LEWIS F L. Decentralized continuous robust controller for mobile robots[C]//Proceedings, IEEE International Conference on Robotics and Automation. Cincinnati, OH, USA, 1990: 1822-1827.
    [10]
    杨贺贺, 陈炜, 童嘉琦, 等. 含柔性关节的轮式移动机械臂的动力学分析[J]. 天津理工大学学报, 2022, 38(2): 45-51.

    YANG Hehe, CHEN Wei, TONG Jiaqi, et al. Dynamic analysis of wheeled mobile manipulator with flexible joints[J]. Journal of Tianjin University of Technology, 2022, 38(2): 45-51. (in Chinese)
    [11]
    陈良港, 张方, 张建光, 等. 基于对偶四元数移动机械臂运动学建模与控制[J]. 科技创新与应用, 2022, 12(5): 1-5.

    CHEN Lianggang, ZHANG Fang, ZHANG Jianguang, et al. Dynamic analysis of wheeled mobile manipulator with flexible joints[J]. Technology Innovation and Application, 2022, 12(5): 1-5. (in Chinese)
    [12]
    魏丽君, 吴海波, 刘海龙, 等. 基于D-H算法的移动机械臂正运动学研究[J]. 计量与测试技术, 2020, 47(10): 1-5.

    WEI Lijun, WU Haibo, LIU Hailong, et al. Research on trajectory planning of mobile manipulator based on improved gradient projection algorithm[J]. Metrology & Measurement Technique, 2020, 47(10): 1-5. (in Chinese)
    [13]
    ZHONG G, KOBAYASHI Y, HOSHINO Y, et al. System modeling and tracking control of mobile manipulator subjected to dynamic interaction and uncertainty[J]. Nonlinear Dynamics, 2013, 73(1): 167-182.
    [14]
    UDWADIA F E, KALABA R E. Analytical Dynamics: a New Approach[M]. New York: Cambridge University Press, 1996.
    [15]
    UDWADIA F E, KALABA R E. A new perspective on constrained motion[J]. Proceedings of the Royal Society of London (Series A): Mathematical and Physical Sciences, 1992, 439(1906): 407-410. doi: 10.1098/rspa.1992.0158
    [16]
    UDWADIA F E, KALABA R E. Explicit equations of motion for mechanical systems with nonideal constraints[J]. Journal of Applied Mechanics, 2001, 68(3): 462-467. doi: 10.1115/1.1364492
    [17]
    HUANG J, CHEN Y H, GUO K. Novel approach to multibody system modeling: cascading and clustering[J]. Journal of Aerospace Engineering, 2014, 27(2): 279-290. doi: 10.1061/(ASCE)AS.1943-5525.0000217
    [18]
    董方方, 喻斌, 赵晓敏, 等. 双移动机械臂空间协作动力学建模研究[J]. 应用数学和力学, 2022, 43(8): 846-856. doi: 10.21656/1000-0887.420223

    DONG Fangfang, YU Bin, ZHAO Xiaomin, et al. Dynamic modeling of spatial cooperation between dual-arm mobile manipulators[J]. Applied Mathematics and Mechanics, 2022, 43(8): 846-856. (in Chinese) doi: 10.21656/1000-0887.420223
    [19]
    韩江, 汪鹏, 董方方, 等. 基于Udwadia-Kalaba方法的平面冗余并联机器人建模与轨迹跟踪控制[J]. 应用数学和力学, 2020, 41(11): 1183-1196. doi: 10.21656/1000-0887.400363

    HAN Jiang, WANG Peng, DONG Fangfang, et al. Modeling and control of planar redundant parallel robots based on the Udwadia-Kalaba method[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1183-1196. (in Chinese) doi: 10.21656/1000-0887.400363
    [20]
    UDWADIA F E. A new perspective on the tracking control of nonlinear structural and mechanical systems[J]. Proceedings of the Royal Society of London (Series A): Mathematical, Physical and Engineering Sciences, 2003, 459(2035): 1783-1800. doi: 10.1098/rspa.2002.1062
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views (315) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return