Volume 44 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
MA Li, SUN Fangfang. Existence and Uniqueness of the Solutions to High-Dimensional McKean-Vlasov SDEs Under Non-Lipschitz Conditions[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1272-1290. doi: 10.21656/1000-0887.440010
Citation: MA Li, SUN Fangfang. Existence and Uniqueness of the Solutions to High-Dimensional McKean-Vlasov SDEs Under Non-Lipschitz Conditions[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1272-1290. doi: 10.21656/1000-0887.440010

Existence and Uniqueness of the Solutions to High-Dimensional McKean-Vlasov SDEs Under Non-Lipschitz Conditions

doi: 10.21656/1000-0887.440010
  • Received Date: 2023-01-10
  • Rev Recd Date: 2023-03-11
  • Publish Date: 2023-10-31
  • The existence and uniqueness of the solutions to high-dimensional McKean-Vlasov stochastic differential equations with discontinuous drift coefficients and corresponding particle systems, were investigated. With the drift coefficient being piecewise Lipschitz continuous about the space variable, through Zvonkin's transformation, the original equation was converted into a new McKean-Vlasov stochastic differential equation with Lipschitz continuous coefficients. Therefore, the new equation has a unique solution. Moreover, the existence and Lipschitz continuity of the inverse function were proven according to the transformation function characteristics. Finally, based on the It's formula and the inverse function characteristics, the existence and uniqueness of the solutions to the McKean-Vlasov stochastic differential equation and the corresponding particle system were obtained.
  • loading
  • [1]
    LEOBACHER G, SZOLGYENYI M. A numerical method for SDEs with discontinuous drift[J]. BIT Numerical Mathematics, 2016, 56 (1): 151-162. doi: 10.1007/s10543-015-0549-x
    [2]
    LEOBACHER G, SZOLGYENYI M. A strong order 1/2 method for multidimensional SDE with discontinuous drift[J]. The Annals of Applied Probablity, 2015, 27 (4): 2383-2418.
    [3]
    马丽, 马瑞楠. 一类随机泛函微分方程带随机步长的EM逼近的渐近稳定[J]. 应用数学和力学, 2019, 40 (1): 97-107. doi: 10.21656/1000-0887.390057

    MA Li, MA Ruinan. Almost sure asymptotic stability of Euler-Maruyama method with random variable stepsizes for stochastic functional differential equations[J]. Applied Mathematics and Mechanics, 2019, 40 (1): 97-107. (in Chinese) doi: 10.21656/1000-0887.390057
    [4]
    梁青. 一类带扰动的随机脉冲泛函微分方程解的渐近性[J]. 应用数学和力学, 2022, 43 (9): 1034-1044. doi: 10.21656/1000-0887.420267

    LIANG Qing. Asymptotic properties of the solution to a class of perturbed stochastic impulsive functional differential equations[J]. Applied Mathematics and Mechanics, 2022, 43 (9): 1034-1044. (in Chinese) doi: 10.21656/1000-0887.420267
    [5]
    李光洁, 杨启贵. G-Brown运动驱动的非线性随机时滞微分方程的稳定化[J]. 应用数学和力学, 2021, 42 (8): 841-851. doi: 10.21656/1000-0887.410332

    LI Guangjie, YANG Qigui. Stabilization of nonlinear stochastic delay differential equation driven by G-Brownian motion[J]. Applied Mathematics and Mechanics, 2021, 42 (8): 841-851. (in Chinese) doi: 10.21656/1000-0887.410332
    [6]
    SCHEUTZOW M. Uniqueness and non-uniqueness of solutions of Vlasov-McKean equations[J]. Journal of the Australian Mathematical Society, 1987, 43 (2): 246-256. doi: 10.1017/S1446788700029384
    [7]
    LEOBACHER G, REISINGER C, STOCKINGER W. Well-posedness and numerical schemes for one-dimensional McKean-Vlasov equations and interacting particle systems with discontinuous drift[J]. BIT Numerical Mathematics, 2022, 62 (4): 1505-1549. doi: 10.1007/s10543-022-00920-4
    [8]
    ROCKNER M, ZHANG X. Well-posedness of distribution dependent SDEs with singular drifts[J]. Bernoulli, 2021, 27 (2): 1131-1158.
    [9]
    HUANG X, WANG F. Singular McKean-Vlasov (reflecting) SDEs with distribution dependent noise[J]. Journal of Mathematical Analysis and Applications, 2020, 154 (1): 126301.
    [10]
    WANG F. Distribution dependent SDEs for Landau type equations[J]. Stochastic Processes and Their Applications, 2018, 128 (2): 595-621.
    [11]
    CHAUDRU DE RAYNAL P E. Strong well posedness of McKean-Vlasov stochastic differential equations with Hölder drift[J]. Stochastic Processes and Their Applications, 2020, 130 (1): 79-107.
    [12]
    REN P. Singular McKean-Vlasov SDEs: well-posedness, regularities and Wang's Harnack inequality[J]. Stochastic Processes and Their Applications, 2023, 156 : 291-311.
    [13]
    ZHAO G. On distribution dependent SDEs with singular drifts[R/OL].[2023-03-11]. https://arxiv.org/abs/2003.04829v3.
    [14]
    HAMMERSLEY W, SISKA D, SZPRUCH L. McKean-Vlasov SDEs under measure dependent Lyapunov conditions[J]. Annales de l'Institut Henri Poincare, Probabilites et Statistiques, 2021, 57 (2): 1032-1057.
    [15]
    CARMONA R, DELARUE F. Probabilistic Theory of Mean Field Games With Applications [M]. Springer Cham, 2018.
    [16]
    RUZHANSKY M, SUGIMOTO M. On global inversion of homogeneous maps[J]. Bulletin of Mathematical Sciences, 2015, 5 (1): 13-18.
    [17]
    MAO Xuerong. Stochastic Differential Equations and Applications[M]. Chichester: Horwood Publishing Ltd, 2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (431) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return