Citation: | MA Li, SUN Fangfang. Existence and Uniqueness of the Solutions to High-Dimensional McKean-Vlasov SDEs Under Non-Lipschitz Conditions[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1272-1290. doi: 10.21656/1000-0887.440010 |
[1] |
LEOBACHER G, SZOLGYENYI M. A numerical method for SDEs with discontinuous drift[J]. BIT Numerical Mathematics, 2016, 56 (1): 151-162. doi: 10.1007/s10543-015-0549-x
|
[2] |
LEOBACHER G, SZOLGYENYI M. A strong order 1/2 method for multidimensional SDE with discontinuous drift[J]. The Annals of Applied Probablity, 2015, 27 (4): 2383-2418.
|
[3] |
马丽, 马瑞楠. 一类随机泛函微分方程带随机步长的EM逼近的渐近稳定[J]. 应用数学和力学, 2019, 40 (1): 97-107. doi: 10.21656/1000-0887.390057
MA Li, MA Ruinan. Almost sure asymptotic stability of Euler-Maruyama method with random variable stepsizes for stochastic functional differential equations[J]. Applied Mathematics and Mechanics, 2019, 40 (1): 97-107. (in Chinese) doi: 10.21656/1000-0887.390057
|
[4] |
梁青. 一类带扰动的随机脉冲泛函微分方程解的渐近性[J]. 应用数学和力学, 2022, 43 (9): 1034-1044. doi: 10.21656/1000-0887.420267
LIANG Qing. Asymptotic properties of the solution to a class of perturbed stochastic impulsive functional differential equations[J]. Applied Mathematics and Mechanics, 2022, 43 (9): 1034-1044. (in Chinese) doi: 10.21656/1000-0887.420267
|
[5] |
李光洁, 杨启贵. G-Brown运动驱动的非线性随机时滞微分方程的稳定化[J]. 应用数学和力学, 2021, 42 (8): 841-851. doi: 10.21656/1000-0887.410332
LI Guangjie, YANG Qigui. Stabilization of nonlinear stochastic delay differential equation driven by G-Brownian motion[J]. Applied Mathematics and Mechanics, 2021, 42 (8): 841-851. (in Chinese) doi: 10.21656/1000-0887.410332
|
[6] |
SCHEUTZOW M. Uniqueness and non-uniqueness of solutions of Vlasov-McKean equations[J]. Journal of the Australian Mathematical Society, 1987, 43 (2): 246-256. doi: 10.1017/S1446788700029384
|
[7] |
LEOBACHER G, REISINGER C, STOCKINGER W. Well-posedness and numerical schemes for one-dimensional McKean-Vlasov equations and interacting particle systems with discontinuous drift[J]. BIT Numerical Mathematics, 2022, 62 (4): 1505-1549. doi: 10.1007/s10543-022-00920-4
|
[8] |
ROCKNER M, ZHANG X. Well-posedness of distribution dependent SDEs with singular drifts[J]. Bernoulli, 2021, 27 (2): 1131-1158.
|
[9] |
HUANG X, WANG F. Singular McKean-Vlasov (reflecting) SDEs with distribution dependent noise[J]. Journal of Mathematical Analysis and Applications, 2020, 154 (1): 126301.
|
[10] |
WANG F. Distribution dependent SDEs for Landau type equations[J]. Stochastic Processes and Their Applications, 2018, 128 (2): 595-621.
|
[11] |
CHAUDRU DE RAYNAL P E. Strong well posedness of McKean-Vlasov stochastic differential equations with Hölder drift[J]. Stochastic Processes and Their Applications, 2020, 130 (1): 79-107.
|
[12] |
REN P. Singular McKean-Vlasov SDEs: well-posedness, regularities and Wang's Harnack inequality[J]. Stochastic Processes and Their Applications, 2023, 156 : 291-311.
|
[13] |
ZHAO G. On distribution dependent SDEs with singular drifts[R/OL].[2023-03-11].
|
[14] |
HAMMERSLEY W, SISKA D, SZPRUCH L. McKean-Vlasov SDEs under measure dependent Lyapunov conditions[J]. Annales de l'Institut Henri Poincare, Probabilites et Statistiques, 2021, 57 (2): 1032-1057.
|
[15] |
CARMONA R, DELARUE F. Probabilistic Theory of Mean Field Games With Applications [M]. Springer Cham, 2018.
|
[16] |
RUZHANSKY M, SUGIMOTO M. On global inversion of homogeneous maps[J]. Bulletin of Mathematical Sciences, 2015, 5 (1): 13-18.
|
[17] |
MAO Xuerong. Stochastic Differential Equations and Applications[M]. Chichester: Horwood Publishing Ltd, 2008.
|