Citation: | WANG Qingshan, YAN Bo, CHEN Yan, DENG Mao, CAI Yuanbin. Digital Twin Method for Dynamic Structures Based on Reduced Order Models and Data Driving[J]. Applied Mathematics and Mechanics, 2023, 44(7): 757-768. doi: 10.21656/1000-0887.430384 |
[1] |
GRIEVES M, VICKERS J. Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems[M]//Transdisciplinary Perspectives on Complex Systems. Springer, 2017: 85-113.
|
[2] |
TAO F, XIAO B, QI Q, et al. Digital twin modeling[J]. Journal of Manufacturing Systems, 2022, 64: 372-389. doi: 10.1016/j.jmsy.2022.06.015
|
[3] |
董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2021, 42(3): 113-141. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202103012.htm
DONG Leiting, ZHOU Xuan, ZHAO Fubin, et al. Key modeling and simulation technology of aircraft structure digital twin[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 113-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202103012.htm
|
[4] |
HAAG S, ANDERL R. Digital twin-proof of concept[J]. Manufacturing Letters, 2018, 15(B): 64-66.
|
[5] |
MOI T, CIBICIK A, RØLVÅG T. Digital twin based condition monitoring of a knuckle boom crane: an experimental study[J]. Engineering Failure Analysis, 2020, 112(3): 104517.
|
[6] |
WANG S, LAI X, HE X, et al. Building a trustworthy product-level shape-performance integrated digital twin with multifidelity surrogate model[J]. Journal of Mechanical Design, 2022, 144(3): 031703-0317114. doi: 10.1115/1.4052390
|
[7] |
LAI X, HE X, WANG S, et al. Building a lightweight digital twin of a crane boom for structural safety monitoring based on a multifidelity surrogate model[J]. Journal of Mechanical Design, 2022, 144(6): 064502. doi: 10.1115/1.4053606
|
[8] |
KAPTEYN M G, KNEZEVIC D J, HUYNH D, et al. Data-driven physics-based digital twins via a library of component-based reduced-order models[J]. International Journal for Numerical Methods in Engineering, 2022, 123(13): 2986-3003. doi: 10.1002/nme.6423
|
[9] |
KAPTEYN M G, KNEZEVIC D J, WILLCOX K. Toward predictive digital twins via component-based reduced-order models and interpretable machine learning[C]//Proceedings of the AIAA Scitech 2020 Forum. Orlando, 2020.
|
[10] |
MILANOSKI D P, GALANOPOULOS G K, LOUTAS T H. Digital-twins of composite aerostructures towards structural health monitoring[C]// 2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace). Naples, Italy, 2021.
|
[11] |
WANG J, YE L, GAO R X, et al. Digital twin for rotating machinery fault diagnosis in smart manufacturing[J]. International Journal of Production Research, 2019, 57(12): 3920-3934. doi: 10.1080/00207543.2018.1552032
|
[12] |
GANGULI R, ADHIKARI S. The digital twin of discrete dynamic systems: initial approaches and future challenges[J]. Applied Mathematical Modelling, 2020, 77(2): 1110-1128.
|
[13] |
CHAKRABORTY S, ADHIKARI S. Machine learning based digital twin for dynamical systems with multiple time-scales[J]. Computers & Structures, 2021, 243: 106410.
|
[14] |
赖学方, 王晓龙, 聂玉峰. 基于Mori-Zwanzig格式和偏最小二乘的非线性模型降阶[J]. 应用数学和力学, 2021, 42(6): 551-561. doi: 10.21656/1000-0887.410230
LAI Xuefang, WANG Xiaolong, NIE Yufeng. Nonlinear model reduction based on Mori-Zwanzig scheme and partial least squares[J]. Applied Mathematics and Mechanics, 2021, 42(6): 551-561. (in Chinese) doi: 10.21656/1000-0887.410230
|
[15] |
罗振东, 张博. Sobolev方程基于POD的降阶外推差分算法[J]. 应用数学和力学, 2016, 37(1): 107-116. doi: 10.3879/j.issn.1000-0887.2016.01.009
LUO Zhendong, ZHANG Bo. Reduced order extrapolation difference algorithm based on pod for Sobolev equation[J]. Applied Mathematics and Mechanics, 2016, 37(1): 107-116. (in Chinese) doi: 10.3879/j.issn.1000-0887.2016.01.009
|
[16] |
PATERA A T, ROZZA G. Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Differential Equations[M]. Massachusetts Institute of Technology, 2007.
|
[17] |
QUARTERONI A, MANZONI A, NEGRI F. Reduced Basis Methods for Partial Differential Equations: an Introduction[M]. Springer, 2015.
|
[18] |
VALLAGHÉ S, HUYNH P, KNEZEVIC D J, et al. Component-based reduced basis for parametrized symmetric eigenproblems[J]. Advanced Modeling and Simulation in Engineering Sciences, 2015, 2(1): 1-30. doi: 10.1186/s40323-014-0017-1
|
[19] |
张珺, 李立州, 原梅妮. 径向基函数参数化翼型的气动力降阶模型优化[J]. 应用数学和力学, 2019, 40(3): 250-258. doi: 10.21656/1000-0887.390187
ZHANG Jun, LI Lizhou, YUAN Meini. Aerodynamic model optimization for radial basis function parameterized airfoils[J]. Applied Mathematics and Mechanics, 2019, 40(3): 250-258. (in Chinese) doi: 10.21656/1000-0887.390187
|
[20] |
GUGERCIN S, ANTOULAS A C. A survey of model reduction by balanced truncation and some new results[J]. International Journal of Control, 2004, 77(8): 748-766. doi: 10.1080/00207170410001713448
|
[21] |
KVRSCHNER P. Balanced truncation model order reduction in limited time intervals for large systems[J]. Advances in Computational Mathematics, 2018, 44(6): 1821-1844. doi: 10.1007/s10444-018-9608-6
|
[22] |
GUYAN R J. Reduction of stiffness and mass matrices[J]. AIAA Journal, 1965, 3(2): 380. doi: 10.2514/3.2874
|
[23] |
BAI Z. Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems[J]. Applied Numerical Mathematics, 2002, 43(1/2): 9-44.
|
[24] |
BEATTIE C, GUGERCIN S. Model reduction by rational interpolation[M]//Model Reduction and Approximation. Society for Industrial and Applied Mathematics, 2017: 297-334.
|
[25] |
SALIMBAHRAMI B, LOHMANN B. Order reduction of large scale second-order systems using Krylov subspace methods[J]. Linear Algebra and Its Applications, 2006, 415(2/3): 385-405.
|
[26] |
ARNOLDI W E. The principle of minimized iterations in the solution of the matrix eigenvalue problem[J]. Quarterly of Applied Mathematics, 1951, 9(1): 17-29.
|
[27] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
|
[28] |
严波. 有限单元法基础[M]. 北京: 高等教育出版社, 2022: 396-397.
YAN Bo. Foundation of Finite Element Method[M]. Beijing: Higher Education Press, 2022: 396-397. (in Chinese)
|
[29] |
ADHIKARI S, BHATTACHARYA S. Dynamic analysis of wind turbine towers on flexible foundations[J]. Shock and Vibration, 2012, 19(1): 37-56.
|