Citation: | LI Zhichao, HAO Yuxin. Study on Natural Vibration Characteristics of L-Shaped Cantilever Beams With the Differential Quadrature Method[J]. Applied Mathematics and Mechanics, 2023, 44(5): 525-534. doi: 10.21656/1000-0887.430382 |
[1] |
CHEN L Q, JIANG W A, PANYAM M, et al. A broadband internally resonant vibratory energy harvester[J]. Journal of Vibration and Acoustics, 2016, 138(6): 061107. http://www.istic.ac.cn/suoguan/detailed.htm?dbname=xw_qk&wid=0220161200680273
|
[2] |
ERTURK A, RENNO J M, INMAN D J. Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs[J]. Journal of Intelligent Material Systems and Structures, 2009, 20(5): 529-544. doi: 10.1177/1045389X08098096
|
[3] |
HARNE R L, SUN A, WANG K W. Leveraging nonlinear saturation-based phenomena in an L-shaped vibration energy harvesting system[J]. Journal of Sound and Vibration, 2016, 363: 517-531. doi: 10.1016/j.jsv.2015.11.017
|
[4] |
LI H, SUN H, SONG B, et al. Nonlinear dynamic response of an L-shaped beam-mass piezoelectric energy harvester[J]. Journal of Sound and Vibration, 2021, 499: 116004. doi: 10.1016/j.jsv.2021.116004
|
[5] |
KIM I H, JANG S J, JUNG H J. Design and experimental study of an L shape piezoelectric energy harvester[J]. Shock and Vibration, 2017, 2017: 8523218.
|
[6] |
BERT C W, JANG S K, STRIZ A G. Two new approximate methods for analyzing free vibration of structural components[J]. AIAA Journal, 1988, 26(5): 612-618. doi: 10.2514/3.9941
|
[7] |
王冬梅, 张伟, 刘寅立. 微分求积法在工程结构动力学中的应用研究[J]. 天津科技大学学报, 2018, 33(1): 71-78. https://www.cnki.com.cn/Article/CJFDTOTAL-TQYX201801015.htm
WANG Dongmei, ZHANG Wei, LIU Yinli. Application of differential quadrature method in engineering structural dynamics[J]. Journal of Tianjin University of Science & Technology, 2018, 33(1): 71-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TQYX201801015.htm
|
[8] |
吴鹦泽, 王冬梅. 微分求积法在悬臂梁结构非线性动力学中的应用研究[J]. 力学研究, 2018, 7: 1-13.
WU Yingze, WAND Dongmei. Application of differential quadrature method to nonlinear dynamics of cantilever beam structures[J]. International Journal of Mechanics Research, 2018, 7: 1-13. (in Chinese)
|
[9] |
WANG X. Differential Quadrature and Differential Quadrature Based Element Methods: Theory and Applications[M]. Oxford: Butterworth-Heinemann, 2015.
|
[10] |
TORNABENE F, FANTUZZI N, UBERTINI F. Strong formulation finite element method based on differential quadrature: a survey[J]. Applied Mechanics Reviews, 2015, 67(2): 020801. doi: 10.1115/1.4028859
|
[11] |
夏雨, 葛仁余, 王静平, 等. 变截面Euler-Bernoulli梁稳态谐振动的微分求积法研究[J]. 安徽工程大学学报, 2021, 36(4): 56-63. https://www.cnki.com.cn/Article/CJFDTOTAL-AHJD202104011.htm
XIA Yu, GE Renyu, WANG Jingping, et al. Differential quadrature method for steady-state harmonic vibration of beams with variable cross-section[J]. Journal of Anhui Polytechnic University, 2021, 36(4): 56-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AHJD202104011.htm
|
[12] |
葛仁余, 张佳宸, 刘凡, 等. 微分求积法在计算功能梯度Timoshenko梁临界荷载中的应用研究[J]. 应用力学学报, 2020, 37(6): 2634-2641. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202006043.htm
GE Renyu, ZHANG Jiachen, LIU Fan, et al. Calculation of critical load for functionally graded Timoshenko beam using differential quadrature method[J]. Chinese Journal of Applied Mechanics, 2020, 37(6): 2634-2641. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202006043.htm
|
[13] |
KHAKPOUR M, BAZARGAN-LARI Y, ZAHEDINEJAD P, et al. Vibrations evaluation of functionally graded porous beams in thermal surroundings by generalized differential quadrature method[J]. Shock and Vibration, 2022, 2022(4): 8516971.
|
[14] |
PENG L, WANG Y. Differential quadrature method for vibration analysis of prestressed beams[J]. E3S Web of Conferences, 2021, 237: 03029. doi: 10.1051/e3sconf/202123703029
|
[15] |
SZEKRÉNYES A. Differential quadrature solution for composite flat plates with delamination using higher-order layerwise models[J]. International Journal of Solids and Structures, 2022, 248: 111621.
|
[16] |
LIU H, ZHAO Y, PISHBIN M, et al. A comprehensive mathematical simulation of the composite size-dependent rotary 3D microsystem via two-dimensional generalized differential quadrature method[J]. Engineering With Computers, 2022, 38(5): 4181-4196. doi: 10.1007/s00366-021-01419-2
|
[17] |
AL-FURJAN M S H, HABIBI M, SHAN L, et al. On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method[J]. Composite Structures, 2021, 257: 113150. http://www.sciencedirect.com/science/article/pii/S0263822320330762
|
[18] |
刘旭, 姚林泉. 热环境中旋转功能梯度纳米环板的振动分析[J]. 应用数学和力学, 2020, 41(11): 1224-1236. doi: 10.21656/1000-0887.410090
LIU Xu, YAO Linquan. Vibration analysis of rotating functionally gradient nano annular plates in thermal environment[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1224-1236. (in Chinese) doi: 10.21656/1000-0887.410090
|
[19] |
葛仁余, 张佳宸, 马国强, 等. 微分求积法分析平面接头应力奇异性[J]. 应用数学和力学, 2022, 43(4): 382-391. doi: 10.21656/1000-0887.420218
GE Renyu, ZHANG Jiachen, MA Guoqiang, et al. Analysis on stress singularity of plane joints with the differential quadrature method[J]. Applied Mathematics and Mechanics, 2022, 43(4): 382-391. (in Chinese) doi: 10.21656/1000-0887.420218
|
[20] |
CAO Y, CAO D, HE G, et al. Vibration analysis and distributed piezoelectric energy harvester design for the L-shaped beam[J]. European Journal of Mechanics A: Solids, 2021, 87: 104214. http://www.sciencedirect.com/science/article/pii/S0997753821000103
|