Volume 44 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
WANG Bin, ZHOU Yanping, BIE Qunyi. Energy Conservation of the 4 D Incompressible Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2023, 44(8): 999-1006. doi: 10.21656/1000-0887.430370
Citation: WANG Bin, ZHOU Yanping, BIE Qunyi. Energy Conservation of the 4 D Incompressible Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2023, 44(8): 999-1006. doi: 10.21656/1000-0887.430370

Energy Conservation of the 4 D Incompressible Navier-Stokes Equations

doi: 10.21656/1000-0887.430370
  • Received Date: 2022-11-16
  • Rev Recd Date: 2022-12-24
  • Publish Date: 2023-08-01
  • The energy conservation of 4D incompressible Navier-Stokes equations was studied. In the case of a singular set with a dimension number less than 4 for the Leray-Hopf weak solution (suitable weak solution), the $L^q\left([0, T] ; L^p\left(\mathbb{R}^4\right)\right)$ condition in the 4D space was obtained based on Wu's partial regularity results about the 4D incompressible Navier-Stokes equations, to ensure the energy conservation.
  • loading
  • [1]
    FEFFERMAN C L. Existence and smoothness of the Navier-Stokes equation[J]. The millennium prize problems, 2000, 57 : 67.
    [2]
    施惟慧. Navier-Stokes方程稳定性研究(Ⅰ)[J]. 应用数学和力学, 1994, 15(9): 821-822. http://www.applmathmech.cn/article/id/2971

    SHI Weihui. Stability study of Navier-Stokes equation (Ⅰ)[J]. Applied Mathematics and Mechanics, 1994, 15(9): 821-822. (in Chinese) http://www.applmathmech.cn/article/id/2971
    [3]
    施惟慧, 方晓佐. Navier-Stokes方程稳定性研究(Ⅱ)[J]. 应用数学和力学, 1994, 15(10): 879-883. http://www.applmathmech.cn/article/id/2957

    SHI Weihui, FANG Xiaozuo. Stability study of Navier-Stokes equation (Ⅱ)[J]. Applied Mathematics and Mechanics, 1994, 15(10): 879-883. (in Chinese) http://www.applmathmech.cn/article/id/2957
    [4]
    FEIREISL E, NOVOTNY A, PETZELTOVÁ H. On the existence of globally defined weak solutions to the Navier-Stokes equations[J]. Journal of Mathematical Fluid Mechanics, 2001, 3(4): 358-392. doi: 10.1007/PL00000976
    [5]
    王金城, 齐进, 吴锤结. 不可压缩Navier-Stokes方程最优动力系统建模和分析[J]. 应用数学和力学, 2020, 41(1): 1-15. doi: 10.21656/1000-0887.400279

    WANG Jincheng, QI Jin, WU Chuijie. Modeling and analysis of the incompressible Navier-Stokes equation optimal dynamical system[J]. Applied Mathematics and Mechanics, 2020, 41(1): 1-15. (in Chinese) doi: 10.21656/1000-0887.400279
    [6]
    ZHANG Z, CHEN Q, MIAO C. On the uniqueness of weak solutions for the 3D Navier-Stokes equations[J]. Annales de l'Institut Henri Poincaré C, 2009, 26(6): 2165-2180. doi: 10.1016/j.anihpc.2009.01.008
    [7]
    LERAY J. Sur le mouvement d'un liquide visqueux emplissant l'espace[J]. Acta Mathematica, 1934, 63(1): 193-248.
    [8]
    HOPF E. Vber die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet[J]. Mathematische Nachrichten, 1950, 4 (1/6): 213-231.
    [9]
    MASUDA K. Weak solutions of Navier-Stokes equations[J]. Tohoku Mathematical Journal: Second Series, 1984, 36(4): 623-646.
    [10]
    FOIAS C. Une remarque sur l'unicité des solutions deséquations de Navier-Stokes en dimension n[J]. Bulletin de la Société Mathématique de France, 1961, 89 : 1-8.
    [11]
    SERRIN J. The Initial-Value Problem for the Navier-Stokes Equations[M]. Madison: The University of Wisconsion Press, 1963.
    [12]
    SCHEFFER V. Partial regularity of solutions to the Navier-Stokes equations[J]. Pacific Journal of Mathematics, 1976, 66(2): 535-552. doi: 10.2140/pjm.1976.66.535
    [13]
    SCHEFFER V. The Navier-Stokes equations in space dimension four[J]. Communications in Mathematical Physics, 1978, 61(1): 41-68. doi: 10.1007/BF01609467
    [14]
    SCHEFFER V. The Navier-Stokes equations on a bounded domain[J]. Communications in Mathematical Physics, 1980, 73(1): 1-42.
    [15]
    WU B. Partially regular weak solutions of the Navier-Stokes equations in R 4×[0, ∞][J]. Archive for Rational Mechanics and Analysis, 2021, 239(3): 1771-1808. doi: 10.1007/s00205-020-01603-6
    [16]
    DONG H, DU D. Partial regularity of solutions to the four-dimensional Navier-Stokes equations at the first blow-up time[J]. Communications in Mathematical Physics, 2007, 273(3): 785-801. doi: 10.1007/s00220-007-0259-6
    [17]
    WANG Y, WU G. A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier-Stokes equations[J]. Journal of Differential Equations, 2014, 256(3): 1224-1249.
    [18]
    ONSAGER L. Statistical hydrodynamics[J]. Il Nuovo Cimento, 1949, 6(2): 279-287.
    [19]
    CAFFARELLI L, KOHN R, NIRENBERG L. Partial regularity of suitable weak solutions of the Navier-Stokes equations[J]. Communications on Pure and Applied Mathematics, 1982, 35(6): 771-831.
    [20]
    LIONS J L. Sur la régularité et l'unicité des solutions turbulentes des équations de Navier-Stokes[J]. Rendiconti del Seminario Matematico della Universita di Padova, 1960, 30 : 16-23.
    [21]
    LADYŽENSKAJA O A, SOLONNIKOV V A, URAL'CEVA N N. Linear and Quasilinear Equations of Parabolic Type[M]. American Mathematical Soc, 1988.
    [22]
    KUKAVICA I. Role of the pressure for validity of the energy equality for solutions of the Navier-Stokes equation[J]. Journal of Dynamics and Differential Equations, 2006, 18(2): 461-482.
    [23]
    SHINBROT M. The energy equation for the Navier-Stokes system[J]. SIAM Journal on Mathematical Analysis, 1974, 5(6): 948-954.
    [24]
    LESLIE T M, SHVYDKOY R. Conditions implying energy equality for weak solutions of the Navier-Stokes equations[J]. SIAM Journal on Mathematical Analysis, 2018, 50(1): 870-890.
    [25]
    SHVYDKOY R. On the energy of inviscid singular flows[J]. Journal of Mathematical Analysis and Applications, 2009, 349(2): 583-595.
    [26]
    EVANS L C, GARIEPY R F. Measure Theory and Fine Properties of Functions[M]. Routledge, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (350) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return