Citation: | WANG Bin, ZHOU Yanping, BIE Qunyi. Energy Conservation of the 4 D Incompressible Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2023, 44(8): 999-1006. doi: 10.21656/1000-0887.430370 |
[1] |
FEFFERMAN C L. Existence and smoothness of the Navier-Stokes equation[J]. The millennium prize problems, 2000, 57 : 67.
|
[2] |
施惟慧. Navier-Stokes方程稳定性研究(Ⅰ)[J]. 应用数学和力学, 1994, 15(9): 821-822. http://www.applmathmech.cn/article/id/2971
SHI Weihui. Stability study of Navier-Stokes equation (Ⅰ)[J]. Applied Mathematics and Mechanics, 1994, 15(9): 821-822. (in Chinese) http://www.applmathmech.cn/article/id/2971
|
[3] |
施惟慧, 方晓佐. Navier-Stokes方程稳定性研究(Ⅱ)[J]. 应用数学和力学, 1994, 15(10): 879-883. http://www.applmathmech.cn/article/id/2957
SHI Weihui, FANG Xiaozuo. Stability study of Navier-Stokes equation (Ⅱ)[J]. Applied Mathematics and Mechanics, 1994, 15(10): 879-883. (in Chinese) http://www.applmathmech.cn/article/id/2957
|
[4] |
FEIREISL E, NOVOTNY A, PETZELTOVÁ H. On the existence of globally defined weak solutions to the Navier-Stokes equations[J]. Journal of Mathematical Fluid Mechanics, 2001, 3(4): 358-392. doi: 10.1007/PL00000976
|
[5] |
王金城, 齐进, 吴锤结. 不可压缩Navier-Stokes方程最优动力系统建模和分析[J]. 应用数学和力学, 2020, 41(1): 1-15. doi: 10.21656/1000-0887.400279
WANG Jincheng, QI Jin, WU Chuijie. Modeling and analysis of the incompressible Navier-Stokes equation optimal dynamical system[J]. Applied Mathematics and Mechanics, 2020, 41(1): 1-15. (in Chinese) doi: 10.21656/1000-0887.400279
|
[6] |
ZHANG Z, CHEN Q, MIAO C. On the uniqueness of weak solutions for the 3D Navier-Stokes equations[J]. Annales de l'Institut Henri Poincaré C, 2009, 26(6): 2165-2180. doi: 10.1016/j.anihpc.2009.01.008
|
[7] |
LERAY J. Sur le mouvement d'un liquide visqueux emplissant l'espace[J]. Acta Mathematica, 1934, 63(1): 193-248.
|
[8] |
HOPF E. Vber die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet[J]. Mathematische Nachrichten, 1950, 4 (1/6): 213-231.
|
[9] |
MASUDA K. Weak solutions of Navier-Stokes equations[J]. Tohoku Mathematical Journal: Second Series, 1984, 36(4): 623-646.
|
[10] |
FOIAS C. Une remarque sur l'unicité des solutions deséquations de Navier-Stokes en dimension n[J]. Bulletin de la Société Mathématique de France, 1961, 89 : 1-8.
|
[11] |
SERRIN J. The Initial-Value Problem for the Navier-Stokes Equations[M]. Madison: The University of Wisconsion Press, 1963.
|
[12] |
SCHEFFER V. Partial regularity of solutions to the Navier-Stokes equations[J]. Pacific Journal of Mathematics, 1976, 66(2): 535-552. doi: 10.2140/pjm.1976.66.535
|
[13] |
SCHEFFER V. The Navier-Stokes equations in space dimension four[J]. Communications in Mathematical Physics, 1978, 61(1): 41-68. doi: 10.1007/BF01609467
|
[14] |
SCHEFFER V. The Navier-Stokes equations on a bounded domain[J]. Communications in Mathematical Physics, 1980, 73(1): 1-42.
|
[15] |
WU B. Partially regular weak solutions of the Navier-Stokes equations in R 4×[0, ∞][J]. Archive for Rational Mechanics and Analysis, 2021, 239(3): 1771-1808. doi: 10.1007/s00205-020-01603-6
|
[16] |
DONG H, DU D. Partial regularity of solutions to the four-dimensional Navier-Stokes equations at the first blow-up time[J]. Communications in Mathematical Physics, 2007, 273(3): 785-801. doi: 10.1007/s00220-007-0259-6
|
[17] |
WANG Y, WU G. A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier-Stokes equations[J]. Journal of Differential Equations, 2014, 256(3): 1224-1249.
|
[18] |
ONSAGER L. Statistical hydrodynamics[J]. Il Nuovo Cimento, 1949, 6(2): 279-287.
|
[19] |
CAFFARELLI L, KOHN R, NIRENBERG L. Partial regularity of suitable weak solutions of the Navier-Stokes equations[J]. Communications on Pure and Applied Mathematics, 1982, 35(6): 771-831.
|
[20] |
LIONS J L. Sur la régularité et l'unicité des solutions turbulentes des équations de Navier-Stokes[J]. Rendiconti del Seminario Matematico della Universita di Padova, 1960, 30 : 16-23.
|
[21] |
LADYŽENSKAJA O A, SOLONNIKOV V A, URAL'CEVA N N. Linear and Quasilinear Equations of Parabolic Type[M]. American Mathematical Soc, 1988.
|
[22] |
KUKAVICA I. Role of the pressure for validity of the energy equality for solutions of the Navier-Stokes equation[J]. Journal of Dynamics and Differential Equations, 2006, 18(2): 461-482.
|
[23] |
SHINBROT M. The energy equation for the Navier-Stokes system[J]. SIAM Journal on Mathematical Analysis, 1974, 5(6): 948-954.
|
[24] |
LESLIE T M, SHVYDKOY R. Conditions implying energy equality for weak solutions of the Navier-Stokes equations[J]. SIAM Journal on Mathematical Analysis, 2018, 50(1): 870-890.
|
[25] |
SHVYDKOY R. On the energy of inviscid singular flows[J]. Journal of Mathematical Analysis and Applications, 2009, 349(2): 583-595.
|
[26] |
EVANS L C, GARIEPY R F. Measure Theory and Fine Properties of Functions[M]. Routledge, 2018.
|