Citation: | BAI Yu, TANG Qiaoli, ZHANG Yan. A Chebyshev Spectral Method for the Unsteady Maxwell Oblique Stationary Point Flow on an Axially Cosine Oscillating Cylinder[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1226-1235. doi: 10.21656/1000-0887.430361 |
[1] |
ABBASI A, FAROOQ W, MABOOD F, et al. Finite difference simulation for oblique stagnation point flow of viscous nanofluid towards a stretching cylinder[J]. Physica Scripta, 2020, 96(1): 015212. doi: 10.1088/1402-4896/abc927
|
[2] |
KOLSI L, ABBASI A, ALQSAIR U F, et al. Thermal enhancement of ethylene glycol base material with hybrid nanofluid for oblique stagnation point slip flow[J]. Case Studies in Thermal Engineering, 2021, 28: 101468. doi: 10.1016/j.csite.2021.101468
|
[3] |
DRAZIN P G, RILEY N. The Navier-Stokes Equations: a Classification of Flows and Exact Solutions[M]. Cambridge: Cambridge University Press, 2006.
|
[4] |
POZRIKIDIS C. Introduction to Theoretical and Computational Fluid Dynamics[M]. Oxford: Oxford University Press, 2011.
|
[5] |
WANG C Y. Axisymmetric stagnation flow on a cylinder[J]. Quarterly of Applied Mathematics, 1974, 32(2): 207-213. doi: 10.1090/qam/99683
|
[6] |
WEIDMAN P D, PUTKARADZE V. Axisymmetric stagnation flow obliquely impinging on a circular cylinder[J]. European Journal of Mechanics B: Fluids, 2003, 22(2): 123-131. doi: 10.1016/S0997-7546(03)00019-0
|
[7] |
RAHIMI A B, ESMAEILPOUR M. Axisymmetric stagnation flow obliquely impinging on a moving circular cylinder with uniform transpiration[J]. International Journal for Numerical Methods in Fluids, 2011, 65(9): 1084-1095. doi: 10.1002/fld.2230
|
[8] |
ABBASI A, MABOOD F, FAROOQ W, et al. Non-orthogonal stagnation point flow of Maxwell nano-material over a stretching cylinder[J]. International Communications in Heat and Mass Transfer, 2021, 120: 105043. doi: 10.1016/j.icheatmasstransfer.2020.105043
|
[9] |
RAHIMI A B, BAYAT R. Effect of the angle of oblique stagnation-point flow impinging axisymmetrically on a vertical circular cylinder with mixed convection heat transfer[J]. International Journal of Sustainable Energy, 2019, 38(9): 849-865. doi: 10.1080/14786451.2019.1601628
|
[10] |
MABOOD F, ABBASI A, FAROOQ W, et al. Effects of non-linear radiation and chemical reaction on Oldroyd-B nanofluid near oblique stagnation point flow[J]. Chinese Journal of Physics, 2022, 77: 1197-1208. doi: 10.1016/j.cjph.2022.03.049
|
[11] |
GHAFFARI A, JAVED T, HSIAO K L. Heat transfer analysis of unsteady oblique stagnation point flow of elastico-viscous fluid due to sinusoidal wall temperature over an oscillating-stretching surface: a numerical approach[J]. Journal of Molecular Liquids, 2016, 219: 748-755. doi: 10.1016/j.molliq.2016.04.014
|
[12] |
STUART J T. The viscous flow near a stagnation point when the external flow has uniform vorticity[J]. Journal of Aerosol Science, 1959, 26(2): 124-125.
|
[13] |
DORREPAA J M. An exact solution of the Navier-Stokes equation which describes non-orthogonal stagnation-point flow in two dimensions[J]. Journal of Fluid Mechanics, 1986, 163: 141-147. doi: 10.1017/S0022112086002240
|
[14] |
TAMADA K J. Two-dimensional stagnation-point flow impinging obliquely on an oscillating flat plate[J]. Journal of the Physical Society of Japan, 1979, 46(1): 310-311. doi: 10.1143/JPSJ.46.310
|
[15] |
REZA M, GUPTA A S. Steady two-dimensional oblique stagnation point flow towards a stretching surface[J]. Fluid Dynamics Research, 2005, 37(5): 334-340. doi: 10.1016/j.fluiddyn.2005.07.001
|
[16] |
REZA M, GUPTA A S. Some aspects of non-orthogonal stagnation-point flow towards a stretching surface[J]. Engineering, 2010, 2(9): 705-709. doi: 10.4236/eng.2010.29091
|
[17] |
LOK Y Y, AMIN N, POP I. Non-orthogonal stagnation point flow towards a stretching sheet[J]. International Journal of Non-Linear Mechanics, 2006, 41(4): 622-627. doi: 10.1016/j.ijnonlinmec.2006.03.002
|
[18] |
HAYAT T, SAIF R S, ELLAHI R, et al. Simultaneous effects of melting heat and internal heat generation in stagnation point flow of Jeffrey fluid towards a nonlinear stretching surface with variable thickness[J]. International Journal of Thermal Sciences, 2018, 132: 334-354.
|
[19] |
NADEEM S, MEHMOOD R, AKBAR N S. Non-orthogonal stagnation point flow of a nano non-Newtonian fluid towards a stretching surface with heat transfer[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 679-689. doi: 10.1016/j.ijheatmasstransfer.2012.10.019
|
[20] |
TOOKE R M, BLYT M G. A note on oblique stagnation-point flow[J]. Physics of Fluids, 2008, 20(3): 33101. doi: 10.1063/1.2876070
|
[21] |
阿斯拉夫M, 阿斯拉夫M M. 微极流体向受热面的MHD驻点流动[J]. 应用数学和力学, 2011, 32(1): 44-52. doi: 10.3879/j.issn.1000-0887.2011.01.005
ASHRAF M, ASHRAF M M. MHD stagnation point flow of a micropolar fluid towards a heated surface[J]. Applied Mathematics and Mechanics, 2011, 32(1): 44-52. (in Chinese) doi: 10.3879/j.issn.1000-0887.2011.01.005
|
[22] |
BAI Y, TANG Q L, ZHANG Y. Unsteady inclined stagnation point flow and thermal transmission of Maxwell fluid on a stretched/contracted plate with modified pressure field[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2022, 32(12): 3824-3847.
|
[23] |
BAI Y, TANG Q L, ZHANG Y. Unsteady MHD oblique stagnation slip flow of Oldroyd-B nanofluids by coupling Cattaneo-Christov double diffusion and Buongiorno model[J]. Chinese Journal of Physics, 2022, 79: 451-470. doi: 10.1016/j.cjph.2022.09.013
|
[24] |
HIEMENZ K. Die grenzschicht an einem in den gleichformingen flussigkeits-strom einge-tauchten graden kreiszylinder[J]. Dingler's Polytechnic Journal, 1911, 326: 321-410.
|
[25] |
HOWARTH L. The boundary layer in three-dimensional flow, part Ⅱ: the flow near a stagnation point[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1951, 42(335): 1433-1440. doi: 10.1080/14786445108560962
|
[26] |
DAVEY A. Boundary-layer flow at a saddle point of attachment[J]. Journal of Fluid Mechanics, 1961, 10(4): 593-610. doi: 10.1017/S0022112061000391
|
[27] |
朱婧, 郑连存, 张欣欣. 具有延伸表面的驻点流动和传热问题的级数解[J]. 应用数学和力学, 2009, 30(4): 432-442. http://www.applmathmech.cn/article/id/1220
ZHU Jing, ZHENG Liancun, ZHANG Xinxin. Analytic solution of stagnation-point flow and heat transfer over a stretching sheet by means of homotopy analysis method[J]. Applied Mathematics and Mechanics, 2009, 30(4): 432-442. (in Chinese) http://www.applmathmech.cn/article/id/1220
|
[28] |
陈亚飞, 郑云英. 不可压缩黏性流体的二维Navier-Stokes方程的间断有限元模拟[J]. 应用数学和力学, 2020, 41(8): 844-852. doi: 10.21656/1000-0887.400379
CHEN Yafei, ZHENG Yunying. A discontinuous Galerkin FEM for 2D Navier-Stokes equations of incompressible viscous fluids[J]. Applied Mathematics and Mechanics, 2020, 41(8): 844-852. (in Chinese) doi: 10.21656/1000-0887.400379
|
[29] |
王尕平, 刘竟慧. 端部旋转的圆柱形容器内的Stokes流[J]. 应用数学和力学, 2023, 44(1): 52-60. doi: 10.21656/1000-0887.430197
WANG Gaping, LIU Jinghui. Stokes flow in cylindrical containers with rotating ends[J]. Applied Mathematics and Mechanics, 2023, 44(1): 52-60. (in Chinese) doi: 10.21656/1000-0887.430197
|
[30] |
MOTSA S S. A new spectral local linearization method for nonlinear boundary layer flow problems[J]. Journal of Applied Mathematics, 2013, 2013(6): 423628.
|
[31] |
MAJEE A, JAVED T, GHAFFARI A, et al. Analysis of heat transfer due to stretching cylinder with partial slip and prescribed heat flux: a Chebyshev spectral Newton iterative scheme[J]. Alexandria Engineering Journal, 2015, 54(4): 1029-1036. doi: 10.1016/j.aej.2015.09.015
|
[32] |
TREFETHEN L N. Spectral Methods in MATLAB[M]. Philadelphia: SIAM, 2000.
|
[33] |
LABROPULU F, LI D, POP I. Non-orthogonal stagnation-point flow towards a stretching surface in a non-Newtonian fluid with heat transfer[J]. International Journal of Thermal Sciences, 2010, 49(6): 1042-1050. doi: 10.1016/j.ijthermalsci.2009.12.005
|
[34] |
MAHAPATRA T, GUPTA A S. Heat transfer in stagnation-point flow towards a stretching sheet[J]. Heat and Mass transfer, 2002, 38(6): 517-521.
|