Volume 44 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
TIAN Yaping, YANG Jianghui, WANG Ruibang. Parametric Solution Domain Structures for Bifurcation and Non-Meshing Dynamic Characteristics of Straight Bevel Gear Systems[J]. Applied Mathematics and Mechanics, 2023, 44(8): 965-976. doi: 10.21656/1000-0887.430330
Citation: TIAN Yaping, YANG Jianghui, WANG Ruibang. Parametric Solution Domain Structures for Bifurcation and Non-Meshing Dynamic Characteristics of Straight Bevel Gear Systems[J]. Applied Mathematics and Mechanics, 2023, 44(8): 965-976. doi: 10.21656/1000-0887.430330

Parametric Solution Domain Structures for Bifurcation and Non-Meshing Dynamic Characteristics of Straight Bevel Gear Systems

doi: 10.21656/1000-0887.430330
  • Received Date: 2022-10-20
  • Rev Recd Date: 2022-12-27
  • Publish Date: 2023-08-01
  • Aimed at the coupling transition relationship between the periodic motion, the tooth surface impact, the non-meshing state and the dynamic load of straight bevel gear systems with backlash, the 2-parameter plane with respect to the time-varying meshing stiffness and the frequency ratio was built based on the cell mapping principle. Besides, the improved CPNF (continuous-Poincaré-Newton-Floquet) method was applied to solve the solution domain structure of the periodicity, impact, non-meshing and dynamic load characteristics of the system cells. The simulation results show that, there are plentiful bifurcation modes with 3 kinds of tooth surface impacts coexisting in the 2-parameter solution domain structure, including the saddle node bifurcation, the Hopf bifurcation, the period-doubling bifurcation, the catastrophe bifurcation and the period-3 bifurcation. The tooth surface impact and chaos will intensify due to increase of the time-varying meshing stiffness coefficient. The tooth surface non-meshing, the tooth back meshing and the dynamic load coefficient will exhibit mutations under the influences of the tooth impact and the periodic motion. Meanwhile, in the same domain, the tooth surface non-meshing and the tooth back meshing will weaken with the frequency ratio but heighten with the stiffness coefficient.
  • loading
  • [1]
    王三民, 沈允文, 董海军. 含间隙和时变啮合刚度的弧齿锥齿轮传动系统非线性振动特性研究[J]. 机械工程学报, 2003, 39 (2): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200302005.htm

    WANG Sanmin, SHEN Yunwen, DONG Haijun. Nonlinear dynamical characteristics of a spiral bevel gear system with backlash and time-varying stiffness[J]. Chinese Journal of Mechanical Engineering, 2003, 39 (2): 28-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200302005.htm
    [2]
    黄康, 孙亚斌, 程彪. 螺旋锥齿轮副非线性动力学研究[J]. 合肥工业大学学报, 2018, 41 (8): 1009-1013. doi: 10.3969/j.issn.1003-5060.2018.08.001

    HUANG Kang, SUN Yabin, CHENG Biao. Research on nonlinear dynamics behavior of spiral bevel gear pair[J]. Journal of Hefei University of Technology, 2018, 41 (8): 1009-1013. (in Chinese) doi: 10.3969/j.issn.1003-5060.2018.08.001
    [3]
    WANG Z, PU W, PEI X, et al. Nonlinear dynamical behaviors of spiral bevel gears in transient mixed lubrication[J]. Tribology International, 2021, 160 : 107022. doi: 10.1016/j.triboint.2021.107022
    [4]
    HUA X, CHEN Z. Effect of roller bearing elasticity on spiral bevel gear dynamics[J]. Advances in Mechanical Engineering, 2020, 12 (7): 1-9.
    [5]
    CAO W, HE T, PU W, et al. Dynamics of lubricated spiral bevel gears under different contact paths[J]. Friction, 2022, 10 (2): 247-267. doi: 10.1007/s40544-020-0477-x
    [6]
    李飞, 袁茹, 朱慧玲, 等. 计及齿面摩擦的弧齿锥齿轮动态特性[J]. 航空动力学报, 2020, 35 (8): 1687-1694. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202008013.htm

    LI Fei, YUAN Ru, ZHU Huiling, et al. Dynamic characteristics of spiral bevel gear considering tooth surface friction[J]. Journal of Aerospace Power, 2020, 35 (8): 1687-1694. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202008013.htm
    [7]
    张磊, 唐从刚, 王德全, 等. 小波Galerkin法在非线性分岔问题求解中的应用[J]. 应用数学和力学, 2021, 42 (1): 27-35. doi: 10.21656/1000-0887.410085

    ZHANG Lei, TANG Conggang, WANG Dequan, et al. Application of wavelet Galerkin method to solution of nonlinear bifurcation problems[J]. Applied Mathematics and Mechanics, 2021, 42 (1): 27-35. (in Chinese) doi: 10.21656/1000-0887.410085
    [8]
    王树国, 张艳波, 刘文亮, 等. 多间隙二级齿轮非线性振动分岔特性研究[J]. 应用数学和力学, 2016, 37 (2): 173-183. doi: 10.3879/j.issn.1000-0887.2016.02.006

    WANG Shuguo, ZHANG Yanbo, LIU Wenliang, et al. Nonlinear vibration bifurcation characteristics of multi-clearance 2-stage gear systems[J]. Applied Mathematics and Mechanics, 2016, 37 (2): 173-183. (in Chinese) doi: 10.3879/j.issn.1000-0887.2016.02.006
    [9]
    GOU X, ZHU L, CHEN D. Bifurcation and chaos analysis of spur gear pair in two-parameter plane[J]. Nonlinear Dynamics, 2015, 79 (3): 2225-2235. doi: 10.1007/s11071-014-1807-1
    [10]
    LIU X, JIANG J, HONG L, et al. Wada boundary bifurcations induced by boundary saddle collision[J]. Physics Letters A, 2018, 383 (2/3): 170-175.
    [11]
    林何, 洪灵, 江俊, 等. 受激并车弧齿锥齿轮系统两参量平面上解域界结构[J]. 振动工程学报, 2021, 34 (5): 1020-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202105016.htm

    LIN He, HONG Ling, JIANG Jun, et al. Solution domain structures of power combining spiral bevel gear system under excitations in two-parameter plane[J]. Journal of Vibration Engineering, 2021, 34 (5): 1020-1026. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202105016.htm
    [12]
    李同杰, 朱如鹏, 鲍和云, 等. 行星齿轮传动系的周期运动及其稳定性[J]. 振动工程学报, 2013, 26 (6): 815-822. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201306002.htm

    LI Tongjie, ZHU Rupeng, BAO Heyun, et al. Coexisting periodic solutions and their stability of a nonlinear planetary gear train[J]. Journal of Vibration Engineering, 2013, 26 (6): 815-822. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201306002.htm
    [13]
    田亚平, 徐璐, 宋佩颉, 等. 基于OGY的含间隙单级齿轮系统混沌运动控制[J]. 振动与冲击, 2020, 39 (14): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202014003.htm

    TIAN Yaping, XU Lu, SONG Peijie, et al. Chaos control of a single-stage spur gear system with backlash based on the OGY method[J]. Journal of Vibration and Shock, 2020, 39 (14): 17-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202014003.htm
    [14]
    田亚平, 褚衍东, 饶晓波. 双参平面内单级直齿圆柱齿轮系统动力学特性综合分析[J]. 振动工程学报, 2018, 31 (2): 219-225. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201802004.htm

    TIAN Yaping, CHU Yandong, RAO Xiaobo. Dynamic characteristic analysis of a single-stage spur gear system in two-parameter plane[J]. Journal of Vibration Engineering, 2018, 31 (2): 219-225. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201802004.htm
    [15]
    陈思宇, 谭儒龙, 郭晓冬. 直齿锥齿轮啮合刚度计算方法研究[J]. 机械传动, 2021, 45 (9): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD202109009.htm

    CHEN Siyu, TANG Rulong, GUO Xiaodong. Research on calculation method of meshing stiffness of straight bevel gear[J]. Journal of Mechanical Transmission, 2021, 45 (9): 62-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD202109009.htm
    [16]
    李润方, 王建军. 齿轮系统动力学-振动、冲击、噪声[M]. 北京: 科学出版社, 1997.

    LI Runfang, WANG Jianjun. Gear System Dynamics Vibration, Shock and Noise[M]. Beijing: Science Press, 1997. (in Chinese)
    [17]
    史美娇, 徐慧东, 张建文. 双侧弹性约束悬臂梁的非光滑擦边动力学[J]. 应用数学和力学, 2022, 43 (6): 619-630. doi: 10.21656/1000-0887.420177

    SHI Meijiao, XU Huidong, ZHANG Jianwen. Non-smooth grazing dynamics for cantilever beams with bilateral elastic constraints[J]. Applied Mathematics and Mechanics, 2022, 43 (6): 619-630. (in Chinese) doi: 10.21656/1000-0887.420177
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (277) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return