Citation: | ZHANG Limin, ZHANG Bo, ZHANG Xu, DUAN Yuhang, SHEN Huoming. Synchronous/Asynchronous Buckling of Double-Layered Microplate Systems[J]. Applied Mathematics and Mechanics, 2023, 44(2): 160-167. doi: 10.21656/1000-0887.430306 |
A linear buckling model for double-layered microplate systems filled with elastic media between layers was developed under the modified couple stress theory and the 2-variable higher-order shear deformation theory. The governing differential equations for system buckling were derived based on the Euler-Lagrange equation. With the Navier method, the synchronous and asynchronous buckling solutions were analytically obtained in the case of both upper and lower plates being simply supported on 4 edges. The influence of each parameter on the buckling characteristics of the system was discussed by numerical examples. Numerical results show that, the asynchronous buckling characteristics of the system depend on the material length scale parameter, the aspect ratio and the elastic medium modulus, while the synchronous buckling characteristics depend on the 1st 2 only; the asynchronous critical buckling load is noticeably greater than that of the synchronous buckling case; the Pasternak modulus has a more significant effect on the buckling characteristics of the system than the Winkler modulus.
[1] |
LAM D C C, YANG F, CHONG A C M, et al. Experiments and theory in strain gradient elasticity[J]. Journal of the Mechanics and Physics of Solids, 2003, 51(8): 1477-1508. doi: 10.1016/S0022-5096(03)00053-X
|
[2] |
LEI J, HE Y, GUO S, et al. Size-dependent vibration of nickel cantilever microbeams: experiment and gradient elasticity[J]. AIP Advances, 2016, 6(10): 105202. doi: 10.1063/1.4964660
|
[3] |
LI Z, HE Y, ZHANG B, et al. Experimental investigation and theoretical modelling on nonlinear dynamics of cantilevered microbeams[J]. European Journal of Mechanics A: Solids, 2019, 78: 103834. doi: 10.1016/j.euromechsol.2019.103834
|
[4] |
XIE Y, LEI J, GUO S, et al. Size-dependent vibration of multi-scale sandwich micro-beams: an experimental study and theoretical analysis[J]. Thin-Walled Structures, 2022, 175: 109115. doi: 10.1016/j.tws.2022.109115
|
[5] |
MINDLIN R D, ESHEL N N. On first strain-gradient theories in linear elasticity[J]. International Journal of Solids and Structures, 1968, 4(1): 109-124. doi: 10.1016/0020-7683(68)90036-X
|
[6] |
CORDERO N M, FOREST S, BUSSO E P. Second strain gradient elasticity of nano-objects[J]. Journal of the Mechanics and Physics of Solids, 2016, 97: 92-124. doi: 10.1016/j.jmps.2015.07.012
|
[7] |
FU G, ZHOU S, QI L. On the strain gradient elasticity theory for isotropic materials[J]. International Journal of Engineering Science, 2016, 80: 28-37.
|
[8] |
MINDLIN R D, TIERSTEN H F. Effects of couple-stresses in linear elasticity[J]. Archive for Rational Mechanics and Analysis, 1962, 11(1): 415-448. doi: 10.1007/BF00253946
|
[9] |
YANG F, CHONG A C M, LAM D C C, et al. Couple stress based strain gradient theory for elasticity[J]. International Journal of Solids and Structures, 2002, 39(10): 2731-2743. doi: 10.1016/S0020-7683(02)00152-X
|
[10] |
HADJESFANDIARI A R, DARGUSH G F. Couple stress theory for solids[J]. International Journal of Solids and Structures, 2011, 48(18): 2496-2510. doi: 10.1016/j.ijsolstr.2011.05.002
|
[11] |
刘松正, 张波, 沈火明, 等. 准三维功能梯度微梁的尺度效应模型及微分求积有限元[J]. 应用数学和力学, 2021, 42(6): 623-636
LIU Songzheng, ZHANG Bo, SHEN Huoming, et al. A size-dependent quasi-3D functionally graded microbeam model and related differential quadrature finite elements[J]. Applied Mathematics and Mechanics, 2021, 42(6): 623-636.(in Chinese)
|
[12] |
徐晓建, 邓子辰. 基于简化的应变梯度理论下Kirchhoff板模型边值问题的提法及其应用[J]. 应用数学和力学, 2022, 43(4): 363-373
XU Xiaojian, DENG Zichen. Boundary value problems of a kirchhoff type plate model based on the simplified strain gradient elasticity and the application[J]. Applied Mathematics and Mechanics, 2022, 43(4): 363-373.(in Chinese)
|
[13] |
雷剑, 谢宇阳, 姚明格, 等. 变截面二维功能梯度微梁的振动和屈曲特性[J]. 应用数学和力学, 2022, 43(10): 1-14
LEI Jian, XIE Yuyang, YAO Mingge, et al. Vibration and buckling characteristics of two- dimensional functionally graded microbeams with variable cross-sections[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1-14.(in Chinese)
|
[14] |
MURMU T, SIENZ J, ADHIKARI S, et al. Nonlocal buckling of double-nanoplate-systems under biaxial compression[J]. Composites (Part B)
|
[15] |
JAMALPOOR A, AHMADI-SAVADKOOHI A, HOSSEINI M, et al. Free vibration and biaxial buckling analysis of double magneto-electro-elastic nanoplate-systems coupled by a visco- Pasternak medium via nonlocal elasticity theory[J]. European Journal of Mechanics A: Solids, 2017, 63: 84-98. doi: 10.1016/j.euromechsol.2016.12.002
|
[16] |
SHAFIEI Z, SARRAMI-FOROUSHANI S, AZHARI F, et al. Application of modified couple-stress theory to stability and free vibration analysis of single and multi-layered graphene sheets[J]. Aerospace Science and Technology, 2020, 98: 105652. doi: 10.1016/j.ast.2019.105652
|
[17] |
王少扬. 基于修正偶应力理论的双层粘弹性纳米板的力学特性分析[D]. 硕士学位论文. 杭州: 浙江大学, 2019.
WANG Shaoyang. Mechanical characteristic analysis of double viscoelastic-nanoplates based on modified couple stress theory[D]. Master Thesis. Hangzhou: Zhejiang University, 2019. (in Chinese)
|
[18] |
LIU J C, ZHANG Y Q, FAN L F. Nonlocal vibration and biaxial buckling of double-viscoelastic-FGM- nanoplate system with viscoelastic Pasternak medium in between[J]. Physics Letters A, 2017, 381(14): 1228-1235. doi: 10.1016/j.physleta.2017.01.056
|
[19] |
黄明琦. 基于非局部理论的纳米板问题新解析解研究[D]. 硕士学位论文. 大连: 大连理工大学, 2020.
HUANG Mingqi. New analytic solutions for nanoplates based on the nonlocal theory[D]. Master Thesis. Dalian: Dalian University of Technology, 2020. (in Chinese)
|
[20] |
SHIMPI R P. Refined plate theory and its variants[J]. AIAA Journal, 2002, 40(1): 137-146. doi: 10.2514/2.1622
|
[21] |
ZHANG B, LI H, LIU J, et al. Surface energy-enriched gradient elastic Kirchhoff plate model and a novel weak-form solution scheme[J]. European Journal of Mechanics A: Solids, 2021, 85: 104118. doi: 10.1016/j.euromechsol.2020.104118
|
[22] |
THAI H T, CHOI D H. Analytical solutions of refined plate theory for bending, buckling and vibration analyses of thick plates[J]. Applied Mathematical Modelling, 2013, 37(18/19): 8310-8323.
|
[23] |
HOSSEINI-HASHEMI S, KHORSHIDI K, AMABILI M. Exact solution for linear buckling of rectangular Mindlin plates[J]. Journal of Sound and Vibration, 2008, 315(1/2): 318-342. doi: 10.1016/j.jsv.2008.01.059
|
[24] |
MIZUSAWA T. Buckling of rectangular mindlin plates with tapered thickness by the spline strip method[J]. International Journal of Solids and Structures, 1993, 30(12): 1663-1677. doi: 10.1016/0020-7683(93)90196-E
|