Citation: | ZHANG Linsen, CHENG Lan, ZHANG Shougui. An Alternating Direction Multiplier Method for 4th-Order Variational Inequalities With Curvature Obstacle[J]. Applied Mathematics and Mechanics, 2023, 44(5): 595-604. doi: 10.21656/1000-0887.430243 |
[1] |
CUI J T, ZHANG Y. A new analysis of discontinuous Galerkin methods for a fourth order variational inequality[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 351(1): 531-547.
|
[2] |
郭楠馨, 张守贵. 自由边界问题的自适应Uzawa块松弛算法[J]. 应用数学和力学, 2019, 40(6): 682-693. doi: 10.21656/1000-0887.390347
GUO Nanxin, ZHANG Shougui. Self-adaptive Uzawa block relaxation method for the free boundary problem[J]. Applied Mathematics and Mechanics, 2019, 40(6): 682-693. (in Chinese) doi: 10.21656/1000-0887.390347
|
[3] |
GUSTAFSSON T, STENBERG R, VIDEMAN J. A stabilized finite element method for the plate obstacle problem[J]. BIT Numerical Mathematics, 2019, 59(1): 97-124. doi: 10.1007/s10543-018-0728-7
|
[4] |
LI M, GUAN X, MAO S. New error estimates of the Morley element for the plate bending problems[J]. Journal of Computational and Applied Mathematics, 2014, 26(3): 405-416. http://www.cugb.edu.cn/uploadCms/file/20600/papers_upload/20140930105957094469.pdf
|
[5] |
饶玲. 单调迭代结合虚拟区域法求解非线性障碍问题[J]. 应用数学和力学, 2018, 39(4): 485-492. doi: 10.21656/1000-0887.380109
RAO Ling. Monotone iterations combined with fictitious domain methods for numerical solution of nonlinear obstacle problems[J]. Applied Mathematics and Mechanics, 2018, 39(4): 485-492. (in Chinese) doi: 10.21656/1000-0887.380109
|
[6] |
王霄婷, 龙宪军, 彭再云. 求解非单调变分不等式的一种二次投影算法[J]. 应用数学和力学, 2022, 43(8): 927-934. doi: 10.21656/1000-0887.420414
WANG Xiaoting, LONG Xianjun, PENG Zaiyun. A double projection algorithm for solving non-monotone variational inequalities[J]. Applied Mathematics and Mechanics, 2022, 43(8): 927-934. (in Chinese) doi: 10.21656/1000-0887.420414
|
[7] |
AL-SAID E A, NOOR M A, KAYA D. Finite difference method for solving fourth-order obstacle problems[J]. International Journal of Computer Mathematics, 2004, 81(6): 741-748. doi: 10.1080/00207160410001661654
|
[8] |
GLOWINSKI R, MARINI L D, VIDRASCU M. Finite-element approximations and iterative solutions of a fourth-order elliptic variational inequality[J]. IMA Journal of Numerical Analysis, 1984, 4(2): 127-167. doi: 10.1093/imanum/4.2.127
|
[9] |
SHI D Y, CHEN S C, HAGIWARA I. Highly nonconforming finite element approximations for a fourth order variational inequality with curvature obstacle[J]. Journal of Systems Science and Complexity, 2005, 18(1): 136-142. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=XTYW200501015
|
[10] |
ZHANG S G, GUO N X. Uzawa block relaxation method for free boundary problem with unilateral obstacle[J]. International Journal of Computer Mathematics, 2021, 98(4): 671-689. doi: 10.1080/00207160.2020.1777402
|
[11] |
ESSOUFI E H, KOKO J, ZAFRAR A. Alternating direction method of multiplier for a unilateral contact problem in electro-elastostatics[J]. Computers & Mathematics With Applications, 2017, 73(8): 1789-1802. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0898122117301062&originContentFamily=serial&_origin=article&_ts=1491406629&md5=807865dba836e8cb2a960afd9226280c
|
[12] |
KOKO J. Uzawa block relaxation method for the unilateral contact problem[J]. Journal of Computational and Applied Mathematics, 2011, 235(8): 2343-2356. http://www.onacademic.com/detail/journal_1000034579755210_10ce.html
|
[13] |
张茂林, 冉静, 张守贵. 具有滑动边界条件Stokes问题的自适应Uzawa块松弛算法[J]. 应用数学和力学, 2021, 42(2): 188-198. doi: 10.21656/1000-0887.410170
ZHANG Maolin, RAN Jing, ZHANG Shougui. A self-adaptive Uzawa block relaxation method for Stokes problems with slip boundary conditions[J]. Applied Mathematics and Mechanics, 2021, 42(2): 188-198. (in Chinese) doi: 10.21656/1000-0887.410170
|
[14] |
ICHIRO H. Highly nonconforming finite element approximations for a fourth order variational inequality with curvature obstacle[J]. Journal of Systems Science and Complexity, 2005, 18(1): 136-142. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=XTYW200501015
|
[15] |
CAO W, YANG D. Adaptive optimal control approximation for solving a fourth-order elliptic variational inequality[J]. Computers & Mathematics With Applications, 2014, 66(12): 2517-2531. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0898122113005853&originContentFamily=serial&_origin=article&_ts=1437831935&md5=6cbc7dab618e6d86736c8e5eec00aa0e
|
[16] |
GLOWINSKI R. Numerical Methods for Nonlinear Variational Problems[M]. Berlin: Spring-Verlag, 2008.
|
[17] |
SCHOLZ R. Mixed finite element approximation of a fourth order variational inequality by the penalty method[J]. Numerical Functional Analysis and Optimization, 2007, 9(3/4): 233-247. http://www.ams.org/mathscinet-getitem?mr=887070
|