Volume 44 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
LI Guangfang, LIU Fangfang, YU Jing, LI Lianhe. The Half Space Problem of Cubic Quasicrystal Piezoelectric Materials[J]. Applied Mathematics and Mechanics, 2023, 44(7): 825-833. doi: 10.21656/1000-0887.430221
Citation: LI Guangfang, LIU Fangfang, YU Jing, LI Lianhe. The Half Space Problem of Cubic Quasicrystal Piezoelectric Materials[J]. Applied Mathematics and Mechanics, 2023, 44(7): 825-833. doi: 10.21656/1000-0887.430221

The Half Space Problem of Cubic Quasicrystal Piezoelectric Materials

doi: 10.21656/1000-0887.430221
  • Received Date: 2022-07-04
  • Rev Recd Date: 2022-10-24
  • Publish Date: 2023-07-01
  • The half space problem of cubic quasicrystal piezoelectric materials was considered. The governing equations of elasticity for cubic quasicrystal piezoelectric materials under anti-plane deformation and in-plane electric field were given. Combined with the surface boundary conditions in the semi-infinite region, a general solution was obtained by means of the operator theory and the complex function method. Then the analytical expressions of the displacements and stresses of the phonon field and the phason field, and the electric displacements of the half space problem under concentrated linear surface forces, were derived.
  • loading
  • [1]
    SHECHTMAN D, BLECH I, GRATIAS D, et al. Metallic phase with long-range orientational order and no translational symmetry[J]. Physical Review Letters, 1984, 53(20): 1951-1954. doi: 10.1103/PhysRevLett.53.1951
    [2]
    DING D, YANG W, HU C, et al. Linear elasticity theory of quasicrystals and defects in quasicrystals[J]. Materials Science Forum, 1994, 150/151: 345-354. doi: 10.4028/www.scientific.net/MSF.150-151.345
    [3]
    范天佑. 准晶数学弹性理论及应用[M]. 北京: 北京理工大学出版社, 1999.

    FAN Tianyou. Mathematical Theory of Elasticity of Quasicrystals and Its Application[M]. Beijing: Beijing Institute of Technology Press, 1999. (in Chinese)
    [4]
    郭俊宏, 刘官厅. 一维六方准晶中带双裂纹的椭圆空口问题的解析解[J]. 应用数学和力学, 2008, 29(4): 439-446. http://www.applmathmech.cn/article/id/1059

    GUO Junhong, LIU Guanting. Analytic solutions of problem about an elliptic hole with two straight cracks in one-dimensional hexagonal quasicrystals[J]. Applied Mathematics and Mechanics, 2008, 29(4): 439-446. (in Chinese) http://www.applmathmech.cn/article/id/1059
    [5]
    LI X F, XIE Y L, FAN T Y. Elasticity and dislocations in quasicrystals with 18-fold symmetry[J]. Physics Letters A, 2014, 377(39): 2810-2814.
    [6]
    肖万伸, 张春雨, 邹伟生. 一维六方准晶复合材料界面层中螺型位错分析[J]. 材料科学与工程学报, 2014, 32(2): 215-218. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201402012.htm

    XIAO Wanshen, ZHANG Chunyu, ZOU Weisheng. Elastic analysis of a screw dislocation in an interfacial layer in 1D hexagonal quasicrystal composites[J]. Journal of Materials Science & Engineering, 2014, 32(2): 215-218. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201402012.htm
    [7]
    WANG X, SCHIAVONE P. Elastic field near the tip of an anticrack in a decagonal quasicrystalline material[J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(3): 401-408. doi: 10.1007/s10483-020-2582-8
    [8]
    ZHANG Z G, DING S H, LI X. Two kinds of contact problems for two-dimensional hexagonal quasicrystals[J]. Mechanics Research Communications, 2021, 113: 103683. doi: 10.1016/j.mechrescom.2021.103683
    [9]
    DING D H, QIN Y L, WANG R H, et al. Generalization of Eshelby's method to the anisotropic elasticity theory of dislocations in quasicrystals[J]. Acta Physica Sinica, 1995, 4(11): 816-824.
    [10]
    ALTAY G, DÖMECI M C. On the fundamental equations of piezoelasticity of quasicrystal media[J]. International Journal of Solids and Structures, 2012, 49(23/24): 3255-3262.
    [11]
    ZHANG L L, ZHANG Y M, GAO Y. General solutions of plane elasticity of one-dimensional orthorhombic quasicrystals with piezoelectric effect[J]. Physics Letters A, 2014, 378(37): 2768-2776. doi: 10.1016/j.physleta.2014.07.027
    [12]
    LI X Y, LI P D, WU T H, et al. Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect[J]. Physics Letters A, 2014, 378(10): 826-834. doi: 10.1016/j.physleta.2014.01.016
    [13]
    FAN C Y, LI Y, XU G T, et al. Fundamental solutions and analysis of three-dimensional cracks in one-dimensional hexagonal piezoelectric quasicrystals[J]. Mechanics Research Communications, 2016, 74: 39-44. doi: 10.1016/j.mechrescom.2016.03.009
    [14]
    白巧梅, 丁生虎. 一维六方准晶压电中正六边形孔边裂纹的反平面问题[J]. 应用数学和力学, 2019, 40(10): 1071-1080. doi: 10.21656/1000-0887.390362

    BAI Qiaomei, DING Shenghu. An anti-plane problem of cracks at edges of regular hexagonal holes in 1D hexagonal piezoelectric quasicrystals[J]. Applied Mathematics and Mechanics, 2019, 40(10): 1071-1080. (in Chinese) doi: 10.21656/1000-0887.390362
    [15]
    LI Y, QIN Q H, ZHAO M H. Analysis of 3D planar crack problems in one-dimensional hexagonal piezoelectric quasicrystals with thermal effect, part Ⅰ: theoretical formulations[J]. International Journal of Solids and Structures, 2020, 188/189: 269-281. doi: 10.1016/j.ijsolstr.2019.10.019
    [16]
    刘兴伟, 李星, 汪文帅. 一维六方压电准晶中正n边形孔边裂纹的反平面问题[J]. 应用数学和力学, 2020, 41(7): 713-724. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX202007002.htm

    LIU Xingwei, LI Xing, WANG Wenshuai. The anti-plane problem of regular n-polygon holes with radial edge cracks in 1D hexagonal piezoelectric quasicrystals[J]. Applied Mathematics and Mechanics, 2020, 41(7): 713-724. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX202007002.htm
    [17]
    CHENG J X, LIU B J, CAO X L, et al. Applications of the Trefftz method to the anti-plane fracture of 1D hexagonal piezoelectric quasicrystals[J]. Engineering Analysis With Boundary Elements, 2021, 131: 194-205. doi: 10.1016/j.enganabound.2021.06.025
    [18]
    周旺民, 宋玉海. 立方准晶材料中的运动螺型位错[J]. 应用数学和力学, 2005, 26(12): 1459-1462. http://www.applmathmech.cn/article/id/636

    ZHOU Wangmin, SONG Yuhai. Moving screw dislocation in cubic quasicrystal[J]. Applied Mathematics and Mechanics, 2005, 26(12): 1459-1462. (in Chinese) http://www.applmathmech.cn/article/id/636
    [19]
    GAO Y, ZHANG L L. Plane problems of cubic quasicrystal media with an elliptic hole or a crack[J]. Physics Letters A, 2011, 375(28): 2775-2781.
    [20]
    LI L H, LIU G T. Stroh formalism for icosahedral quasicrystal and its application[J]. Physics Letters A, 2012, 376(8/9): 987-990.
    [21]
    LONG F, LI X F. Thermal stresses of a cubic quasicrystal circular disc[J]. Mechanics Research Communications, 2022, 124: 103913.
    [22]
    王仁卉, 胡承正, 桂嘉年. 准晶物理学[M]. 北京: 科学出版社, 2004.

    WANG Renhui, HU Chengzheng, GUI Jianian. Quasicrystal Physics[M]. Beijing: Science Press, 2004. (in Chinese)
    [23]
    CHIANG C R. Mode-Ⅲ crack problems in a cubic piezoelectric medium[J]. Acta Mechanica, 2013, 224: 2203-2217.
    [24]
    JOHNSON K L. Contact Mechanics[M]. Cambridge: Cambridge University Press, 1985.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (344) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return