Volume 44 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
CHEN Chen, FENG Xiaoli, CHEN Hanzhang. The Random Source Inverse Method and Properties for a Class of Stochastic Differential Equations[J]. Applied Mathematics and Mechanics, 2023, 44(7): 847-856. doi: 10.21656/1000-0887.430170
Citation: CHEN Chen, FENG Xiaoli, CHEN Hanzhang. The Random Source Inverse Method and Properties for a Class of Stochastic Differential Equations[J]. Applied Mathematics and Mechanics, 2023, 44(7): 847-856. doi: 10.21656/1000-0887.430170

The Random Source Inverse Method and Properties for a Class of Stochastic Differential Equations

doi: 10.21656/1000-0887.430170
  • Received Date: 2022-05-19
  • Rev Recd Date: 2022-06-28
  • Publish Date: 2023-07-01
  • The random source inverse method and properties for a class of stochastic differential equations driven by the fractional Brownian motion with Hurst index H∈(0, 1). This problem can be obtained from the transform of many stochastic models and is a widely followed problem. For the direct problem, the mild solution to the equation was obtained by means of constant variation, and according to the statistical properties of the mild solution, the well-posedness of the direct problem was discussed. For the inverse problem, some statistics of the random source term were determined from the random data at the final moment, to prove the uniqueness of the inverse problem, and the stability of the inverse problem with a(x) in different ranges was discussed.
  • loading
  • [1]
    GROETSH C W. 反问题: 大学生的科技活动[M]. 程晋, 谭永基, 刘继军, 译. 北京: 清华大学出版社, 2006.

    GROETSH C W. Inverse Problem: Activities for Undergraduates[M]. CHENG Jin, TAN Yongji, LIU Jijun, transl. Beijing: Tsinghua University Press, 2006. (in Chinese)
    [2]
    刘继军. 不适定问题的正则化方法及应用[M]. 北京: 科学出版社, 2005.

    LIU Jijun. Regularization Methods and Applications for Ill-Posed Problems[M]. Beijing: Science Press, 2005. (in Chinese)
    [3]
    王彦飞. 反演问题的计算方法及其应用[M]. 北京: 高等教育出版社, 2007.

    WANG Yanfei. Computational Methods for Inversion Problems and Their Applications[M]. Beijing: Higher Education Press, 2007. (in Chinese)
    [4]
    耿肖肖, 程浩. 一类球型区域上变系数反向热传导问题[J]. 应用数学和力学, 2021, 42(7): 723-734. doi: 10.21656/1000-0887.410297

    GENG Xiaoxiao, CHENG Hao. The backward heat conduction problem with variable coefficients in a spherical domain[J]. Applied Mathematics and Mechanics, 2021, 42(7): 723-734. (in Chinese) doi: 10.21656/1000-0887.410297
    [5]
    柳冕, 程浩, 石成鑫. 一类非线性时间分数阶扩散方程反问题的变分型正则化[J]. 应用数学和力学, 2022, 43(3): 341-352. doi: 10.21656/1000-0887.420168

    LIU Mian, CHENG Hao, SHI Chengxin. Variational regularization of the inverse problem of a class of nonlinear time-fractional diffusion equations[J]. Applied Mathematics and Mechanics, 2022, 43(3): 341-352. (in Chinese) doi: 10.21656/1000-0887.420168
    [6]
    RASCANU A, NUALART D. Differential equations driven by fractional Brownian motion[J]. Collectanea Mathematica , 2002, 53(1): 55-81.
    [7]
    BAI L H, MA J. Stochastic differential equations driven by fractional Brownian motion and Poisson point process[J]. Bernoulli, 2015, 21(1): 303-334.
    [8]
    MIJENA J B, NANE E. Space-time fractional stochastic partial differential equations[J]. Stochastic Processes and Their Applications, 2015, 125(9): 3301-3326. doi: 10.1016/j.spa.2015.04.008
    [9]
    TINDEL S, TUDOR C A, VIENS F. Stochastic evolution equations with fractional Brownian motion[J]. Probability Theory and Related Fields, 2003, 127(2): 186-204. doi: 10.1007/s00440-003-0282-2
    [10]
    LI P J, WANG X. Inverse random source scattering for the Helmholtz equation with attenuation[J]. SIAM Journal of Applied Mathematics, 2021, 81: 485-506. doi: 10.1137/19M1309456
    [11]
    LI P J, WANG X. An inverse random source problem for Maxwell's equations[J]. Multiscale Modeling & Simulation, 2021, 19(1): 25-45.
    [12]
    LI P J, WANG X. An inverse random source problem for the one-dimensional Helmholtz equation with attenuation[J]. Inverse Problems, 2021, 37: 015009. doi: 10.1088/1361-6420/abcd43
    [13]
    NIE Daxin, DENG Weihua. An inverse random source problem for the time-space fractional diffusion equation driven by fractional Brownian motion[J/OL]. Journal of Inverse and Ill-Posed Problems, 2023(2023-02-28)[2023-06-28]. https://doi.org/10.1515/jiip-2021-0061.
    [14]
    FENG X L, ZHAO M X, LI P J, et al. An inverse source problem for the stochastic wave equation[J]. Inverse Problems and Imaging, 2022, 16: 397-415. doi: 10.3934/ipi.2021055
    [15]
    FENG X L, LI P J, WANG X. An inverse random source problem for the time fractional diffusion equation driven by a fractional Brownian motion[J]. Inverse Problems, 2020, 36(4): 045008.
    [16]
    赵丽志, 冯晓莉. 一类随机对流扩散方程的反源问题[J]. 应用数学和力学, 2022, 43(12): 1392-1401. doi: 10.21656/1000-0887.420399

    ZHAO Lizhi, FENG Xiaoli. An inverse source problem for the stochastic convection-diffusion equation[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1392-1401. (in Chinese) doi: 10.21656/1000-0887.420399
    [17]
    NUALART D. The Malliavin Calculus and Related Topics[M]//Probability and Its Applications. Springer, 1996.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (475) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return