Citation: | CHEN Chen, FENG Xiaoli, CHEN Hanzhang. The Random Source Inverse Method and Properties for a Class of Stochastic Differential Equations[J]. Applied Mathematics and Mechanics, 2023, 44(7): 847-856. doi: 10.21656/1000-0887.430170 |
[1] |
GROETSH C W. 反问题: 大学生的科技活动[M]. 程晋, 谭永基, 刘继军, 译. 北京: 清华大学出版社, 2006.
GROETSH C W. Inverse Problem: Activities for Undergraduates[M]. CHENG Jin, TAN Yongji, LIU Jijun, transl. Beijing: Tsinghua University Press, 2006. (in Chinese)
|
[2] |
刘继军. 不适定问题的正则化方法及应用[M]. 北京: 科学出版社, 2005.
LIU Jijun. Regularization Methods and Applications for Ill-Posed Problems[M]. Beijing: Science Press, 2005. (in Chinese)
|
[3] |
王彦飞. 反演问题的计算方法及其应用[M]. 北京: 高等教育出版社, 2007.
WANG Yanfei. Computational Methods for Inversion Problems and Their Applications[M]. Beijing: Higher Education Press, 2007. (in Chinese)
|
[4] |
耿肖肖, 程浩. 一类球型区域上变系数反向热传导问题[J]. 应用数学和力学, 2021, 42(7): 723-734. doi: 10.21656/1000-0887.410297
GENG Xiaoxiao, CHENG Hao. The backward heat conduction problem with variable coefficients in a spherical domain[J]. Applied Mathematics and Mechanics, 2021, 42(7): 723-734. (in Chinese) doi: 10.21656/1000-0887.410297
|
[5] |
柳冕, 程浩, 石成鑫. 一类非线性时间分数阶扩散方程反问题的变分型正则化[J]. 应用数学和力学, 2022, 43(3): 341-352. doi: 10.21656/1000-0887.420168
LIU Mian, CHENG Hao, SHI Chengxin. Variational regularization of the inverse problem of a class of nonlinear time-fractional diffusion equations[J]. Applied Mathematics and Mechanics, 2022, 43(3): 341-352. (in Chinese) doi: 10.21656/1000-0887.420168
|
[6] |
RASCANU A, NUALART D. Differential equations driven by fractional Brownian motion[J]. Collectanea Mathematica , 2002, 53(1): 55-81.
|
[7] |
BAI L H, MA J. Stochastic differential equations driven by fractional Brownian motion and Poisson point process[J]. Bernoulli, 2015, 21(1): 303-334.
|
[8] |
MIJENA J B, NANE E. Space-time fractional stochastic partial differential equations[J]. Stochastic Processes and Their Applications, 2015, 125(9): 3301-3326. doi: 10.1016/j.spa.2015.04.008
|
[9] |
TINDEL S, TUDOR C A, VIENS F. Stochastic evolution equations with fractional Brownian motion[J]. Probability Theory and Related Fields, 2003, 127(2): 186-204. doi: 10.1007/s00440-003-0282-2
|
[10] |
LI P J, WANG X. Inverse random source scattering for the Helmholtz equation with attenuation[J]. SIAM Journal of Applied Mathematics, 2021, 81: 485-506. doi: 10.1137/19M1309456
|
[11] |
LI P J, WANG X. An inverse random source problem for Maxwell's equations[J]. Multiscale Modeling & Simulation, 2021, 19(1): 25-45.
|
[12] |
LI P J, WANG X. An inverse random source problem for the one-dimensional Helmholtz equation with attenuation[J]. Inverse Problems, 2021, 37: 015009. doi: 10.1088/1361-6420/abcd43
|
[13] |
NIE Daxin, DENG Weihua. An inverse random source problem for the time-space fractional diffusion equation driven by fractional Brownian motion[J/OL]. Journal of Inverse and Ill-Posed Problems, 2023(2023-02-28)[2023-06-28].
|
[14] |
FENG X L, ZHAO M X, LI P J, et al. An inverse source problem for the stochastic wave equation[J]. Inverse Problems and Imaging, 2022, 16: 397-415. doi: 10.3934/ipi.2021055
|
[15] |
FENG X L, LI P J, WANG X. An inverse random source problem for the time fractional diffusion equation driven by a fractional Brownian motion[J]. Inverse Problems, 2020, 36(4): 045008.
|
[16] |
赵丽志, 冯晓莉. 一类随机对流扩散方程的反源问题[J]. 应用数学和力学, 2022, 43(12): 1392-1401. doi: 10.21656/1000-0887.420399
ZHAO Lizhi, FENG Xiaoli. An inverse source problem for the stochastic convection-diffusion equation[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1392-1401. (in Chinese) doi: 10.21656/1000-0887.420399
|
[17] |
NUALART D. The Malliavin Calculus and Related Topics[M]//Probability and Its Applications. Springer, 1996.
|