Citation: | HUANG Rong, DENG Yangfang, WENG Zhifeng. The SAV Scheme Based on the Barycentric Interpolation Collocation Method for the Allen-Cahn Equation[J]. Applied Mathematics and Mechanics, 2023, 44(5): 573-582. doi: 10.21656/1000-0887.430149 |
[1] |
ALLEN S, CAHN J. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J]. Acta Metallurgica, 1979, 27(6): 1085-1095. doi: 10.1016/0001-6160(79)90196-2
|
[2] |
BENNES M, CHALUPECKY V, MIKULA K. Geometrical image segmentation by the Allen-Cahn equation[J]. Applied Numerical Mathematics, 2004, 51(2-3): 187-205. doi: 10.1016/j.apnum.2004.05.001
|
[3] |
KOBAYASHI R. Physicai modeling and numerical simulations of dendritic crystal growth[J]. Physica D: Nonlinear Phenomena, 1993, 63(3/4): 410-423. doi: 10.1016/0167-2789(93)90120-p
|
[4] |
FENG X B, PROHL A. Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows[J]. Numerische Mathematik, 2003, 94(1): 33-65. doi: 10.1007/s00211-002-0413-1
|
[5] |
DU Q, YANG J. Asymptotically compatible Fourier spectral approximations of nonlocal Allen-Cahn equations[J]. SIAM Journal on Numerical Analysis, 2016, 54(3): 1899-1919. doi: 10.1137/15M1039857
|
[6] |
ZHAI S, FENG X, HE Y. Numerical simulation of the three dimensional Allen-Cahn equation by the high-order compact ADI method[J]. Computer Physics Communications, 2014, 185(10): 2449-2455. doi: 10.1016/j.cpc.2014.05.017
|
[7] |
WENG Z, TANG L. Analysis of the operator splitting scheme for the Allen-Cahn equation[J]. Numerical Heat Transfer (Part B): Fundamentals, 2016, 70(5): 472-483. doi: 10.1080/10407790.2016.1215714
|
[8] |
LI C, HUANG Y, YI N. An unconditionally energy stable second order finite element method for solving the Allen-Cahn equation[J]. Journal of Computational and Applied Mathematics, 2019, 353: 38-48. doi: 10.1016/j.cam.2018.12.024
|
[9] |
LIAO H, TANG T, ZHOU T. On energy stable, maximum-principle preserving, second order BDF scheme with variable steps for the Allen-Cahn equation[J]. SIAM Journal on Numerical Analysis, 2020, 58(4): 2294-2314. doi: 10.1137/19M1289157
|
[10] |
LI H, SONG Z, HU J. Numerical analysis of a second-order IPDGFE method for the Allen-Cahn equation and the curvature-driven geometric flow[J]. Computers & Mathematics With Applications, 2021, 86: 49-62.
|
[11] |
LI J, JU L, CAI Y, et al. Unconditionally maximum bound principle preserving linear schemes for the conservative Allen-Cahn equation with nonlocal constraint[J]. Journal of Scientific Computing, 2021, 87(3): 1-32. doi: 10.1007/s10915-021-01512-0
|
[12] |
汪精英, 翟术英. 分数阶Cahn-Hilliard方程的高效数值算法[J]. 应用数学和力学, 2021, 42(8): 832-840. doi: 10.21656/1000-0887.420008
WANG Jingying, ZHAI Shuying. Efficient numerical algorithm for the fractional Cahn-Hilliard equation[J]. Applied Mathematics and Mechanics, 2021, 42(8): 832-840. (in Chinese) doi: 10.21656/1000-0887.420008
|
[13] |
曾维鸿, 傅卓佳, 汤卓超. 水槽动力特性数值模拟的新型局部无网格配点法[J]. 应用数学和力学, 2022, 43(4): 392-400. doi: 10.21656/1000-0887.420246
ZENG Weihong, FU Zhuojia, TANG Zhuochao. A novel localized meshless collocation method for numerical simulation of flume dynamic characteristics[J]. Applied Mathematics and Mechanics, 2022, 43(4): 392-400. (in Chinese) doi: 10.21656/1000-0887.420246
|
[14] |
吴迪, 李小林. 时间分数阶扩散波方程的无单元Galerkin法分析[J]. 应用数学和力学, 2022, 43(2): 215-223. doi: 10.21656/1000-0887.420172
WU Di, LI Xiaolin. An element-free Galerkin method for time-fractional diffusion-wave equations[J]. Applied Mathematics and Mechanics, 2022, 43(2): 215-223. (in Chinese) doi: 10.21656/1000-0887.420172
|
[15] |
王兆清, 徐子康. 基于平面问题的位移压力混合配点法[J]. 计算物理, 2018, 35(1): 77-86. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL201801010.htm
WANG Zhaoqing, XU Zikang. Displacement pressure mixed collocation method based on plane problem[J]. Computational physics, 2018, 35(1): 77-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL201801010.htm
|
[16] |
HU Y, PENG A, CHEN L, et al. Analysis of the barycentric interpolation collocation scheme for the Burgers equation[J]. Science Asia, 2021, 47(6): 758.
|
[17] |
DAREHMIRAKI M, REZAZADEH A, AHMADIAN A, et al. An interpolation method for the optimal control problem governed by the elliptic convection-diffusion equation[J]. Numerical Methods for Partial Differential Equations, 2022, 38(2): 137-159. doi: 10.1002/num.22625/abstract
|
[18] |
DENG Y, WENG Z. Barycentric interpolation collocation method based on Crank-Nicolson scheme for the Allen-Cahn equation[J]. AIMS Mathematics, 2021, 6(4): 3857-3873. http://www.researchgate.net/publication/348874624_Barycentric_interpolation_collocation_method_based_on_Crank-Nicolson_scheme_for_the_Allen-Cahn_equation
|
[19] |
LIU H, HUANG J, ZHANG W, et al. Meshfree approach for solving multi-dimensional systems of Fredholm integral equations via barycentric Lagrange interpolation[J]. Applied Mathematics and Computation, 2019, 346: 295-304. http://www.onacademic.com/detail/journal_1000040906451410_249d.html
|
[20] |
YI S, YAO L. A steady barycentric Lagrange interpolation method for the 2D higher-order time fractional telegraph equation with nonlocal boundary condition with error analysis[J]. Numerical Methods for Partial Differential Equations, 2019, 35(5): 1694-1716. http://www.sciencedirect.com/science/article/pii/S096007791930267X
|
[21] |
SHEN J, XU J, YANG J. The scalar auxiliary variable (SAV) approach for gradient flows[J]. Journal of Computational Physics, 2018, 353: 407-416. http://www.math.purdue.edu/~shen/pub/SXY17.pdf
|
[22] |
HUANG F, SHEN J, YANG Z. A highly efficient and accurate new scalar auxiliary variable approach for gradient flows[J]. SIAM Journal on Scientific Computing, 2020, 42(4): A2514-A2536.
|
[23] |
CHENG Q, LIU C, SHEN J. Generalized SAV approaches for gradient systems[J]. Journal of Computational and Applied Mathematics, 2021, 394: 113532. http://www.sciencedirect.com/science/article/pii/S0377042721001515
|
[24] |
LI X, SHEN J. Stability and error estimates of the SAV Fourier-spectral method for the phase field crystal equation[J]. Advances in Computational Mathematics, 2020, 46(3): 48. http://www.xueshufan.com/publication/3031773824
|
[25] |
SHEN J, XU J. Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows[J]. SIAM Journal on Numerical Analysis, 2018, 56(5): 2895-2912. http://www.nstl.gov.cn/paper_detail.html?id=b274cd7358273bcdbfd1fa987c6fdfd3
|
[26] |
KLEIN G, BERRUT J. Linear rational finite differences from derivatives of barycentric rational interpolants[J]. SIAM Journal on Numerical Analysis, 2012, 50(2): 643-656. http://d.wanfangdata.com.cn/periodical/88c1707a69313eb241ecc25eea2bfcd3
|