Citation: | YANG Jikang, YU Jinwei, YANG Weihua. Distributed Formation Maneuver Control of Networked Euler-Lagrange Systems[J]. Applied Mathematics and Mechanics, 2023, 44(7): 870-883. doi: 10.21656/1000-0887.430130 |
[1] |
GAN Y, DAI X. Kinematic cooperation analysis and trajectory teaching in multiple robots system for welding[C]//ETFA 2011. Toulouse, France: IEEE, 2011: 1-8.
|
[2] |
SHITAL S, CHIDDARWAR, BABU N R. Dynamic priority allocation for conflict free coordinated manipulation of multiple agents[C]//2009 IEEE International Conference on Automation Science and Engineering. Bangalore, India: IEEE, 2008: 549-554.
|
[3] |
LIU Z, GUAN Z, SHEN X, et al. Consensus of multi-agent networks with aperiodic sampled communication via impulsive algorithms using position-only measurements[J]. IEEE Transactions on Automatic Control, 2012, 57(10): 2639-2643. doi: 10.1109/TAC.2012.2214451
|
[4] |
LIU Z, YU X, GUAN Z, et al. Pulse-modulated intermittent control in consensus of multiagent systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(5): 783-793. doi: 10.1109/TSMC.2016.2524063
|
[5] |
马丽新, 刘晨, 刘磊. 基于actor-critic算法的分数阶多自主体系统最优主-从一致性控制[J]. 应用数学和力学, 2022, 43(1): 104-114. doi: 10.21656/1000-0887.420124
MA Lixin, LIU Chen, LIU Lei. Optimal leader-following consensus control of fractional-order multi-agent systems based on the actor-critic algorithm[J]. Applied Mathematics and Mechanics, 2022, 43(1): 104-114. (in Chinese) doi: 10.21656/1000-0887.420124
|
[6] |
郑丽颖, 杨永清, 许先云. 基于时变拓扑结构的二阶多智能体系统采样一致性[J]. 应用数学和力学, 2022, 43(7): 783-791. doi: 10.21656/1000-0887.420220
ZHENG Liying, YANG Yongqing, XU Xianyun. Sampling consensus of second-order multi-agent systems based on time-varying topology[J]. Applied Mathematics and Mechanics, 2022, 43(7): 783-791. (in Chinese) doi: 10.21656/1000-0887.420220
|
[7] |
赵玮, 任凤丽. 基于牵制控制的多智能体系统的有限时间与固定时间一致性[J]. 应用数学和力学, 2021, 42(3): 299-307. doi: 10.21656/1000-0887.410190
ZHAO Wei, REN Fengli. Finite-time and fixed-time consensus for multi-agent systems via pinning control[J]. Applied Mathematics and Mechanics, 2021, 42(3): 299-307. (in Chinese) doi: 10.21656/1000-0887.410190
|
[8] |
WANG H L. Consensus of networked mechanical systems with communication delays: a unified framework[J]. IEEE Transactions on Automatic Control, 2014, 59(6): 1571-1576. doi: 10.1109/TAC.2013.2293413
|
[9] |
WANG Q, CHEN J, XIN B, et al. Distributed optimal consensus for Euler-Lagrange systems based on event-triggered control[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(7): 4588-4598. doi: 10.1109/TSMC.2019.2944857
|
[10] |
WANG S, HUANG J. Adaptive leader-following consensus for multiple Euler-Lagrange systems with an uncertain leader system[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(7): 2188-2196. doi: 10.1109/TNNLS.2018.2878463
|
[11] |
WANG Y, YU S, XIANG X, et al. Sampled-data consensus for networked Euler-Lagrange systems with differentiable scaling functions[J]. IEEE Access, 2021, 9: 139271-139279. doi: 10.1109/ACCESS.2021.3106663
|
[12] |
YAN H, SUN C, HUG. Robust tracking control of an Euler-Lagrange system subject to uncertain friction and impact[C]//2015 IEEE International Conference on Information and Automation. Lijiang, China: IEEE, 2015.
|
[13] |
WEI Q L, WANG X, ZHONG X, et al. Consensus control of leader-following multi-agent systems in directed topology with heterogeneous disturbances[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(2): 423-431. doi: 10.1109/JAS.2021.1003838
|
[14] |
DENG C, CHE W W. Fault-tolerant fuzzy formation control for a class of nonlinear multiagent systems under directed and switching topology[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(9): 5456-5465. doi: 10.1109/TSMC.2019.2954870
|
[15] |
DONG X, LI Q, ZHAO Q, et al. Time-varying group formation control for general linear multi-agent systems with directed topologies[C]//2016 35th Chinese Control Conference (CCC). Chengdu, China: IEEE, 2016.
|
[16] |
ZHANG W, ZHAO Y, HE W, et al. Time-varying formation tracking for multiple dynamic targets: finite- and fixed-time convergence[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(4): 1323-1327. doi: 10.1109/TCSII.2020.3025199
|
[17] |
ZHAO J, YU X, LI X, et al. Bearing-only formation tracking control of multi-agent systems with local reference frames and constant-velocity leaders[J]. IEEE Control Systems Letters, 2021, 5(1): 1-6. doi: 10.1109/LCSYS.2020.2999972
|
[18] |
ZHAO S, ZELAZO D. Translational and scaling formation maneuver control via a bearing-based approach[J]. IEEE Transactions on Control of Network Systems, 2017, 4(3): 429-438. doi: 10.1109/TCNS.2015.2507547
|
[19] |
ONUOHA O, TNUNAY H, DING Z. Affine formation maneuver control of multi-agent systems with triple-integrator dynamics[C]//2019 American Control Conference (ACC). Philadelphia, PA, USA: IEEE, 2019.
|
[20] |
HAN T, LIN Z, ZHENG R, et al. A barycentric coordinate-based approach to formation control under directed and switching sensing graphs[J]. IEEE Transactions on Cybernetics, 2018, 48(4): 1202-1215. doi: 10.1109/TCYB.2017.2684461
|
[21] |
HAN T, LIN Z, XU W, et al. Three-dimensional formation merging control of second-order agents under directed and switching topologies[C]//11th IEEE International Conference on Control & Automation (ICCA). Taichung: IEEE, 2014.
|
[22] |
ZHAO S. Affine formation maneuver control of multiagent systems[J]. IEEE Transactions on Automatic Control, 2018, 63(12): 4140-4155. doi: 10.1109/TAC.2018.2798805
|
[23] |
LI D, MA G, XU Y, et al. Layered affine formation control of networked uncertain systems: a fully distributed approach over directed graphs[J]. IEEE Transactions on Cybernetics, 2021, 51(12): 6119-6130. doi: 10.1109/TCYB.2020.2965657
|
[24] |
CHEN L, MEI J, LI C, et al. Distributed leader-follower affine formation maneuver control for high-order multiagent systems[J]. IEEE Transactions on Automatic Control, 2020, 65(11): 4941-4948. doi: 10.1109/TAC.2020.2986684
|
[25] |
ZHI H, CHEN L, LI C, et al. Leader-follower affine formation control of second-order nonlinear uncertain multi-agent systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(12): 3547-3551. doi: 10.1109/TCSII.2021.3072652
|
[26] |
XU Y, ZHAO S, LUO D, et al. Affine formation maneuver control of linear multi-agent systems with undirected interaction graphs[C]//2018 IEEE Conference on Decision and Control (CDC). Miami, FL, USA: IEEE, 2018: 502-507.
|
[27] |
XU Y, ZHAO S, LUO D, et al. Affine formation maneuver control of high-order multi-agent systems over directed networks[J]. Automatica, 2020, 118: 109004. doi: 10.1016/j.automatica.2020.109004
|
[28] |
XU Y, LUO D, YOU Y, et al. Affine transformation based formation maneuvering for discrete-time directed networked systems[J]. Science China Technological Sciences, 2020, 63: 73-85. doi: 10.1007/s11431-018-9456-0
|
[29] |
LIN Y, LIN Z, SUN Z, et al. A unified approach for finite-time global stabilization of affine, rigid, and translational formation[J]. IEEE Transactions on Automatic Control, 2022, 67(4): 1869-1881. doi: 10.1109/TAC.2021.3084247
|
[30] |
HAN Z, WANG L, LIN Z, et al. Formation control with size scaling via a complex Laplacian-based approach[J]. IEEE Transactions on Cybernetics, 2016, 46(10): 2348-2359. doi: 10.1109/TCYB.2015.2477107
|
[31] |
LIN Z, WANG L, HAN Z, et al. Distributed formation control of multi-agent systems using complex Laplacian[J]. IEEE Transactions on Automatic Control, 2014, 59(7): 1765-1777. doi: 10.1109/TAC.2014.2309031
|
[32] |
FANG X, LI X, XIE L. Distributed formation maneuver control of multiagent systems over directed graphs[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8201-8212.
|
[33] |
CHEN G, LEWIS F L. Distributed adaptive tracking control for synchronization of unknown networked Lagrangian systems[J]. IEEE Transactions on Systems, Man, and Cybernetics(Part B): Cybernetics, 2011, 41(3): 805-816. doi: 10.1109/TSMCB.2010.2095497
|
[34] |
MENG Z, LIN Z, REN W. Leader-follower swarm tracking for networked Lagrange systems[J]. Systems & Control Letters, 2012, 61(1): 117-126.
|
[35] |
JIE M, REN W, MA G. Distributed containment control for Lagrangian networks with parametric uncertainties under a directed graph[J]. Automatica, 2012, 48(4): 653-659. doi: 10.1016/j.automatica.2012.01.020
|
[36] |
KLOTZ J R, OBUZ S, KAN Z, et al. Synchronization of uncertain Euler-Lagrange systems with uncertain time-varying communication delays[J]. IEEE Transactions on Cybernetics, 2018, 48(2): 807-817.
|
[37] |
KELLY R, DAVILA V S, PEREZ J. Control of Robot Manipulators in Joint Space[M]. London: Springer, 2005.
|