Volume 43 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
LIU Huimin, PU Xueke. Modulation Approximation of a 2-Fluid System in Plasma[J]. Applied Mathematics and Mechanics, 2022, 43(9): 944-954. doi: 10.21656/1000-0887.430007
Citation: LIU Huimin, PU Xueke. Modulation Approximation of a 2-Fluid System in Plasma[J]. Applied Mathematics and Mechanics, 2022, 43(9): 944-954. doi: 10.21656/1000-0887.430007

Modulation Approximation of a 2-Fluid System in Plasma

doi: 10.21656/1000-0887.430007
  • Received Date: 2022-01-11
  • Rev Recd Date: 2022-02-12
  • Available Online: 2022-07-12
  • Publish Date: 2022-09-30
  • A kind of 2-fluid system in plasmas describes rich plasma dynamics, including the interactions between the ion acoustic wave and the plasma body wave. In order to describe the evolution of the envelope of the small oscillating wave packet solution of the 2-fluid model, the nonlinear Schrödinger (NLS) equation was derived as a formal approximation equation with the multi-scale analysis method, and the uniform energy estimation of the error between the exact solution and the approximate solution to the 2-fluid model was given in the Sobolev space. The NLS approximation was finally proved strictly on the time-scale

    \begin{document}$ {\cal{O}}(\epsilon^{-2})$\end{document}

    .

  • loading
  • [1]
    冯依虎, 石兰芳, 许永红, 等. 一类大气尘埃等离子体扩散模型研究[J]. 应用数学和力学, 2015, 36(6): 639-650 doi: 10.3879/j.issn.1000-0887.2015.06.008

    FENG Yihu, SHI Lanfang, XU Yonghong, et al. Study on a class of diffusion models for dust plasma in atmosphere[J]. Applied Mathematics and Mechanics, 2015, 36(6): 639-650.(in Chinese) doi: 10.3879/j.issn.1000-0887.2015.06.008
    [2]
    陈丽娟, 鲁世平. 一类太空等离子体单粒子运动模型的同宿轨[J]. 应用数学和力学, 2013, 34(12): 1258-1265 doi: 10.3879/j.issn.1000-0887.2013.12.004

    CHEN Lijuan, LU Shiping. Homoclinic orbit of the motion model for a single space plasma particle[J]. Applied Mathematics and Mechanics, 2013, 34(12): 1258-1265.(in Chinese) doi: 10.3879/j.issn.1000-0887.2013.12.004
    [3]
    GUO B L. Soliton Theory and Its Application[M]. Berlin: Springer, 2008.
    [4]
    GUO B L, HUANG D W. Existence of solitary waves for a simplified two fluid system of equations in plasma[J]. Journal of Mathematical Physics, 2005, 46(7): 073514. doi: 10.1063/1.1941088
    [5]
    HAN L J, ZHANG J J, GUO B L. Global smooth solution for a kind of two-fluid system in plasmas[J]. Journal of Differential Equations, 2012, 252(5): 3453-3481. doi: 10.1016/j.jde.2011.12.004
    [6]
    GUO Y, PAUSADER B. Global smooth ion dynamics in the Euler-Poisson system[J]. Communications in Mathematical Physics, 2011, 303(1): 89-125. doi: 10.1007/s00220-011-1193-1
    [7]
    GUO Y, PU X K. KdV limit of the Euler-Poisson system[J]. Archive for Rational Mechanics and Analysis, 2014, 211: 673-710. doi: 10.1007/s00205-013-0683-z
    [8]
    PU X K. Dispersive limit of the Euler-Poisson system in higher dimensions[J]. SIAM Journal on Mathematical Analysis, 2013, 45(2): 834-878. doi: 10.1137/120875648
    [9]
    LIU H M, PU X K. Long wavelength limit for the quantum Euler-Poisson equation[J]. SIAM Journal on Mathematical Analysis, 2016, 48(4): 2345-2381. doi: 10.1137/15M1046587
    [10]
    ABLOWITZ M J, SEGUR H. Solitons and the Inverse Scattering Transform[M]//SIAM Studies in Applied Mathematics. 1981.
    [11]
    ZAKHAROV V E. Stability of periodic waves of finite amplitude on the surface of a deep fluid[J]. Journal of Applied Mechanics and Technical Physics, 1968, 9(2): 190-194.
    [12]
    SULEM C, SULEM P. The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse[M]. Springer Science & Business Media, 2007.
    [13]
    BERGÉ L. Wave collapse in physics: principle and applications to light and plasma waves[J]. Physics Reports, 1998, 303(5/6): 259-370.
    [14]
    LIU H M, PU X K. Justification of the NLS approximation for the Euler-Poisson equation[J]. Communications in Mathematical Physics, 2019, 371(2): 357-398. doi: 10.1007/s00220-019-03576-4
    [15]
    KALYAKIN L A. Asymptotic decay of a one-dimensional wave packet in a nonlinear dispersive medium[J]. SBORNIK Mathematics, 1988, 60: 457-483. doi: 10.1070/SM1988v060n02ABEH003181
    [16]
    TOTZ N, WU S J. A rigorous justification of the modulation approximation to the 2D full water wave problem[J]. Communications in Mathematical Physics, 2012, 310(3): 817-883. doi: 10.1007/s00220-012-1422-2
    [17]
    TOTZ N. A justification of the modulation approximation to the 3D full water wave problem[J]. Communications in Mathematical Physics, 2015, 335(1): 369-443. doi: 10.1007/s00220-014-2259-7
    [18]
    SCHNEIDER G. Justification of the NLS approximation for the KdV equation using the Miura transformation[J]. Advances in Mathematical Physics, 2011(4): 1687-9120.
    [19]
    DÜLL W P, SCHNEIDER G, WAYNE C E. Justification of the non-linear Schrödinger equation for the evolution of gravity driven 2D surface water waves in a canal of finite depth[J]. Archive for Rational Mechanics and Analysis, 2016, 220(2): 543-602. doi: 10.1007/s00205-015-0937-z
    [20]
    SCHNEIDER G, WAYNE C E. Justification of the NLS approximation for a quasilinear water wave model[J]. Journal of Differential Equations, 2011, 251(2): 238-269. doi: 10.1016/j.jde.2011.04.011
    [21]
    SHATAH J. Normal forms and quadratic nonlinear Klein-Gordon equations[J]. Communications on Pure and Applied Mathematics, 1985, 38: 685-696. doi: 10.1002/cpa.3160380516
    [22]
    DÜLL W P. Justification of the nonlinear Schrödinger approximation for a quasi-linear Klein-Gordon equation[J]. Communications in Mathematical Physics, 2017, 335(3): 1189-1207.
    [23]
    BIAN D F, LIU H M, PU X K. Modulation approximation for the quantum Euler-Poisson equation[J]. Discrete and Continuous Dynamical Systems (Series B), 2021, 26(8): 4375-4405. doi: 10.3934/dcdsb.2020292
    [24]
    DÜLL W P. Validity of the nonlinear schrödinger approximation for the two-dimensional water wave problem with and without surface tension in the arc length formulation[J]. Archive for Rational Mechanics and Analysis, 2021, 239: 831-914. doi: 10.1007/s00205-020-01586-4
    [25]
    KATO T, PONCE G. Commutator estimates and the Euler and Navier-Stokes equations[J]. Communications on Pure and Applied Mathematics, 1988, 41(7): 891-907. doi: 10.1002/cpa.3160410704
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (607) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return