Volume 44 Issue 5
May  2023
Turn off MathJax
Article Contents
WANG Heyuan, XIAO Shengzhong, MEI Pengfei, ZHANG Xi. Dynamic Mechanism and Energy Evolution of the Waterwheel Chaotic Rotation[J]. Applied Mathematics and Mechanics, 2023, 44(5): 560-572. doi: 10.21656/1000-0887.420336
Citation: WANG Heyuan, XIAO Shengzhong, MEI Pengfei, ZHANG Xi. Dynamic Mechanism and Energy Evolution of the Waterwheel Chaotic Rotation[J]. Applied Mathematics and Mechanics, 2023, 44(5): 560-572. doi: 10.21656/1000-0887.420336

Dynamic Mechanism and Energy Evolution of the Waterwheel Chaotic Rotation

doi: 10.21656/1000-0887.420336
  • Received Date: 2021-11-08
  • Rev Recd Date: 2022-01-13
  • Publish Date: 2023-05-01
  • To reveal the mechanism of the waterwheel chaotic rotation, the dynamic mechanism and the energy conversion of the waterwheel chaotic rotation were studied with the method of moment analysis. The mathematical model for the Malkus waterwheel rotation was transformed into the Kolmogorov system. Based on the different coupling modes of inertia moments, internal moments, dissipation moments and external moments, the main factors and internal dynamic mechanisms of the Malkus waterwheel chaotic rotation were analyzed and discussed with the method of theoretical analysis and numerical simulation. The conversion among the Hamiltonian energy, the kinetic energy and the potential energy was investigated. The relationship between the energies and the Rayleigh number was discussed. The main factors influencing the chaotic rotation are the external moments and the dissipation moments. The analysis and simulation results show that, the lack-of-moment mode cannot lead to the system chaos, but the full-moment mode can, i.e., the waterwheel chaotic rotation will occur only in the existence of all 4 types of moments and when the dissipation and external forces match well. The Casimir function was introduced to analyze the system dynamics and the energy conversion. The bounds for the chaotic attractor were obtained with the Casimir function. The Casimir function reflects the energy conversion and the distances between the orbits and the equilibria. Numerical simulations depict the relationships among them.
  • loading
  • [1]
    LORENZ E N. Deterministic nonperiodic[J]. Journal of the Atmospheric Sciences, 1963, 20(2): 130-141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
    [2]
    TEMAN R. Infinite Dimensional Dynamic System in Mechanics and Physics[M]//Applied Mathematical Sciences. New York: Springer-Verlag, 2000.
    [3]
    PCHELINTSEV A N. Numerical and physical modeling of the dynamics of the Lorenz system[J]. Numerical Analysis and Applications, 2014, 7(2): 159-167. doi: 10.1134/S1995423914020098
    [4]
    KNOBLOCH E. Chaos in the segmented disc dynamo[J]. Physics Letters A, 1981, 82(9): 439-440. doi: 10.1016/0375-9601(81)90274-7
    [5]
    SPARROW C. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors[M]. New York: Springer-Verlag, 1982.
    [6]
    MIROSLAV K, GODFREY G. Theory for the exprimental observation of chaos in a rotating water wheel[J]. Physical Review A, 1992, 45(2): 626-637. doi: 10.1103/PhysRevA.45.626
    [7]
    HILBORN R C. Chaos and Nonlinear Dynamics[M]. Oxford: Oxford University Press, 1994.
    [8]
    LESLIE E M. The Malkus-Lorenz water wheel revisited[J]. American Association of Physics Teachers, 75(12): 1114-1122.
    [9]
    LEONOV G A, KUZNETSOV N V, KORZHEMANOVA N A, et al. Lyapunov dimension formula for the globalattractor of the Lorenz system[J]. Communications in Nonlinear Science, 2016, 41: 84-103. doi: 10.1016/j.cnsns.2016.04.032
    [10]
    ASHISH B, VAN G R A. Chaos in a non-autonomous nonlinear system describing asymmetricwater wheels[J]. Nonlinear Dynamics, 2018, 93: 1977-1988. doi: 10.1007/s11071-018-4301-3
    [11]
    王贺元. Couette-Taylor流的力学机理与能量转换[J]. 数学物理学报, 2020, 40(1): 243-256. doi: 10.3969/j.issn.1003-3998.2020.01.019

    WANG Heyuan, Mechanical mechanism and energy conversion of Couette-Taylor flow[J]. Acta Mathematica Scientia, 2020, 40(1): 243-256. (in Chinese) doi: 10.3969/j.issn.1003-3998.2020.01.019
    [12]
    王贺元, 崔进. 旋转流动的低模分析及仿真研究[J]. 应用数学和力学, 2017, 38(7): 794-806. doi: 10.21656/1000-0887.360342

    WANG Heyuan, CUI Jin. Low-dimensional analysis and numerical simulation of rotating flow[J]. Applied Mathematics and Mechanics, 2017, 38(7): 794-806. (in Chinese) doi: 10.21656/1000-0887.360342
    [13]
    ARNOLD V. Kolmogorov's hydrodynamic attractors[J]. Proceedings of the Royal Society of London(Series A): Mathematical and Physical Sciences, 1991, 434(1890): 19-22. doi: 10.1098/rspa.1991.0077
    [14]
    PASINI A, PELINO V. A unified view of Kolmogorov and Lorenz systems[J]. Physics Letters A, 2000, 275 (5/6): 435-446. http://pdfs.semanticscholar.org/ab3c/c234054df2d435696491e2c93421b872c202.pdf
    [15]
    LIANG X, QI G. Mechanical analysis and energy conversion of Chen chaotic system[J]. Brazilian Journal of Physics, 2017, 47(4): 288-294. http://www.sciencedirect.com/science/article/pii/S0960077917300723
    [16]
    LIANG X, QI G. Mechanical analysis of Chen chaotic system[J]. Chaos, Solitons and Fractals, 2017, 98: 173-177. doi: 10.1016/j.chaos.2017.03.021
    [17]
    QI G, LIANG X. Mechanical analysis of Qi four-wing chaotic system[J]. Nonlinear Dynamics, 2016, 86(2): 1095-1106. doi: 10.1007/s11071-016-2949-0
    [18]
    PELINO V, MAIMONE F, PASINI A. Energy cycle for the Lorenz attractor[J]. Chaos, Solitons and Fractals, 2014, 64: 67-77. doi: 10.1016/j.chaos.2013.09.005
    [19]
    MARSDEN J E, RATIU T S. Introduction to Mechanics and Symmetry: a Basic Exposition of Classical MechanicalSystems[M]. 2nd ed. Berlin: Springer, 2002.
    [20]
    STROGATZ S H. Nonlinear Dynamics and Chaos[M]. Reading, MA: Perseus Books, 1994.
    [21]
    DOERING C R, GIBBON J D. On the shape anddimension of the Lorenz attractor[J]. Dynamics and Stability of Systems, 1995, 10(3): 255-268. doi: 10.1080/02681119508806207
    [22]
    MORRISON P J. Thoughts on brackets and dissipation: old and new[J]. Journal of Physics: Conference Series, 2009, 169(1): 012006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (451) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return