Citation: | WANG Heyuan, XIAO Shengzhong, MEI Pengfei, ZHANG Xi. Dynamic Mechanism and Energy Evolution of the Waterwheel Chaotic Rotation[J]. Applied Mathematics and Mechanics, 2023, 44(5): 560-572. doi: 10.21656/1000-0887.420336 |
[1] |
LORENZ E N. Deterministic nonperiodic[J]. Journal of the Atmospheric Sciences, 1963, 20(2): 130-141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
|
[2] |
TEMAN R. Infinite Dimensional Dynamic System in Mechanics and Physics[M]//Applied Mathematical Sciences. New York: Springer-Verlag, 2000.
|
[3] |
PCHELINTSEV A N. Numerical and physical modeling of the dynamics of the Lorenz system[J]. Numerical Analysis and Applications, 2014, 7(2): 159-167. doi: 10.1134/S1995423914020098
|
[4] |
KNOBLOCH E. Chaos in the segmented disc dynamo[J]. Physics Letters A, 1981, 82(9): 439-440. doi: 10.1016/0375-9601(81)90274-7
|
[5] |
SPARROW C. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors[M]. New York: Springer-Verlag, 1982.
|
[6] |
MIROSLAV K, GODFREY G. Theory for the exprimental observation of chaos in a rotating water wheel[J]. Physical Review A, 1992, 45(2): 626-637. doi: 10.1103/PhysRevA.45.626
|
[7] |
HILBORN R C. Chaos and Nonlinear Dynamics[M]. Oxford: Oxford University Press, 1994.
|
[8] |
LESLIE E M. The Malkus-Lorenz water wheel revisited[J]. American Association of Physics Teachers, 75(12): 1114-1122.
|
[9] |
LEONOV G A, KUZNETSOV N V, KORZHEMANOVA N A, et al. Lyapunov dimension formula for the globalattractor of the Lorenz system[J]. Communications in Nonlinear Science, 2016, 41: 84-103. doi: 10.1016/j.cnsns.2016.04.032
|
[10] |
ASHISH B, VAN G R A. Chaos in a non-autonomous nonlinear system describing asymmetricwater wheels[J]. Nonlinear Dynamics, 2018, 93: 1977-1988. doi: 10.1007/s11071-018-4301-3
|
[11] |
王贺元. Couette-Taylor流的力学机理与能量转换[J]. 数学物理学报, 2020, 40(1): 243-256. doi: 10.3969/j.issn.1003-3998.2020.01.019
WANG Heyuan, Mechanical mechanism and energy conversion of Couette-Taylor flow[J]. Acta Mathematica Scientia, 2020, 40(1): 243-256. (in Chinese) doi: 10.3969/j.issn.1003-3998.2020.01.019
|
[12] |
王贺元, 崔进. 旋转流动的低模分析及仿真研究[J]. 应用数学和力学, 2017, 38(7): 794-806. doi: 10.21656/1000-0887.360342
WANG Heyuan, CUI Jin. Low-dimensional analysis and numerical simulation of rotating flow[J]. Applied Mathematics and Mechanics, 2017, 38(7): 794-806. (in Chinese) doi: 10.21656/1000-0887.360342
|
[13] |
ARNOLD V. Kolmogorov's hydrodynamic attractors[J]. Proceedings of the Royal Society of London(Series A): Mathematical and Physical Sciences, 1991, 434(1890): 19-22. doi: 10.1098/rspa.1991.0077
|
[14] |
PASINI A, PELINO V. A unified view of Kolmogorov and Lorenz systems[J]. Physics Letters A, 2000, 275 (5/6): 435-446. http://pdfs.semanticscholar.org/ab3c/c234054df2d435696491e2c93421b872c202.pdf
|
[15] |
LIANG X, QI G. Mechanical analysis and energy conversion of Chen chaotic system[J]. Brazilian Journal of Physics, 2017, 47(4): 288-294. http://www.sciencedirect.com/science/article/pii/S0960077917300723
|
[16] |
LIANG X, QI G. Mechanical analysis of Chen chaotic system[J]. Chaos, Solitons and Fractals, 2017, 98: 173-177. doi: 10.1016/j.chaos.2017.03.021
|
[17] |
QI G, LIANG X. Mechanical analysis of Qi four-wing chaotic system[J]. Nonlinear Dynamics, 2016, 86(2): 1095-1106. doi: 10.1007/s11071-016-2949-0
|
[18] |
PELINO V, MAIMONE F, PASINI A. Energy cycle for the Lorenz attractor[J]. Chaos, Solitons and Fractals, 2014, 64: 67-77. doi: 10.1016/j.chaos.2013.09.005
|
[19] |
MARSDEN J E, RATIU T S. Introduction to Mechanics and Symmetry: a Basic Exposition of Classical MechanicalSystems[M]. 2nd ed. Berlin: Springer, 2002.
|
[20] |
STROGATZ S H. Nonlinear Dynamics and Chaos[M]. Reading, MA: Perseus Books, 1994.
|
[21] |
DOERING C R, GIBBON J D. On the shape anddimension of the Lorenz attractor[J]. Dynamics and Stability of Systems, 1995, 10(3): 255-268. doi: 10.1080/02681119508806207
|
[22] |
MORRISON P J. Thoughts on brackets and dissipation: old and new[J]. Journal of Physics: Conference Series, 2009, 169(1): 012006.
|