Volume 43 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
LI Yingxue, WANG Haoyuan, LOU Qin. Mesoscopic Numerical Study on Flow Boiling Heat Transfer Performance in Channels With Multiple Rectangular Heaters[J]. Applied Mathematics and Mechanics, 2022, 43(7): 727-739. doi: 10.21656/1000-0887.420325
Citation: LI Yingxue, WANG Haoyuan, LOU Qin. Mesoscopic Numerical Study on Flow Boiling Heat Transfer Performance in Channels With Multiple Rectangular Heaters[J]. Applied Mathematics and Mechanics, 2022, 43(7): 727-739. doi: 10.21656/1000-0887.420325

Mesoscopic Numerical Study on Flow Boiling Heat Transfer Performance in Channels With Multiple Rectangular Heaters

doi: 10.21656/1000-0887.420325
  • Received Date: 2021-10-28
  • Rev Recd Date: 2022-02-28
  • Publish Date: 2022-07-15
  • The flow boiling phenomenon in a channel with multiple rectangular heaters under a constant wall temperature was numerically studied with the lattice Boltzmann method. The effects of spacings between heaters, heater lengths and heater surface wettabilities on the bubble morphology, the bubble area and the heat flux on the heater surface, were studied. The results show that, the bubble growth rate increases with the spacing between heaters. The larger the bubble area is, the earlier the nucleated bubbles will leave the heater surface. The corresponding boiling heat transfer performance increases by 12% with the spacing between heaters growing from 250 lattices to 1 000 lattices. On the other hand, the longer the heater length is, the earlier the bubble will nucleate and leave the heater surface, and the better the boiling heat transfer performance will be. The boiling heat transfer performance increases by 13% with the heater length rising from 16 lattices to 22 lattices. In addition, the bubble nucleates later on the hydrophilic surface than on the hydrophobic surface. Compared with the hydrophilic surface, the hydrophobic surface retains residual bubbles after the leaving of bubbles from the heater. The average heat flux and the bubble area of the hydrophilic surface are less than those of the hydrophobic surface. With the contact angle changing from 77° to 120°, the heat transfer performance increases by 26%. Finally, the orthogonal test results indicate that, the wettability of the heat exchanger surface has the greatest influence on the flow boiling heat transfer performance, while the heater length has the least influence.

  • loading
  • [1]
    KANG M. Effect of surface roughness on pool boiling heat transfer[J]. International Journal of Heat and Mass Transfer, 2000, 43(22): 4073-4085. doi: 10.1016/S0017-9310(00)00043-0
    [2]
    GOEL P, NAYAK A K, KULKARNI P P, et al. Experimental study on bubble departure characteristics in subcooled nucleate pool boiling[J]. International Journal of Multiphase Flow, 2017, 89: 163-176. doi: 10.1016/j.ijmultiphaseflow.2016.10.012
    [3]
    HE H, LIU Y, LIU L, et al. Numerical simulation of bubble growth on and departure from the heated surface by an improved lattice Boltzmann model[J]. Kerntechnik, 2018, 83: 186-192. doi: 10.3139/124.110877
    [4]
    GONG S, CHENG P. A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer[J]. International Journal of Heat and Mass Transfer, 2012, 55(17/18): 4923-4927. doi: 10.1016/j.ijheatmasstransfer.2012.04.037
    [5]
    WANG H, LOU Q, LI L. Mesoscale simulations of saturated flow boiling heat transfer in a horizontal microchannel[J]. Numerical Heat Transfer(Part A): Applications, 2020, 78(4): 107-124. doi: 10.1080/10407782.2020.1786290
    [6]
    DONG Z, XU J, JIANG F, et al. Numerical study of vapor bubble effect on flow and heat transfer in microchannel[J]. International Journal of Thermal Sciences, 2012, 54: 22-32. doi: 10.1016/j.ijthermalsci.2011.11.019
    [7]
    NIE D, GUAN G. Study on boiling heat transfer in a shear flow through the lattice Boltzmann method[J]. Physics of Fluids, 2012, 33: 043314.
    [8]
    GONG S, CHENG P. Numerical investigation of saturated flow boiling in microchannels by the lattice Boltzmann method[J]. Numerical Heat Transfer(Part A): Applications, 2014, 65: 644-661. doi: 10.1080/10407782.2013.836025
    [9]
    TAN K, HU Y, HE Y. Effect of wettability on flow boiling heat transfer in a microtube[J]. Case Studies in Thermal Engineering, 2021, 26: 101018. doi: 10.1016/j.csite.2021.101018
    [10]
    YIN X, TIAN Y, ZHOU D, et al. Numerical study of flow boiling in an intermediate-scale vertical tube under low heat flux[J]. Applied Thermal Engineering, 2019, 153: 739-747. doi: 10.1016/j.applthermaleng.2019.03.067
    [11]
    AZIZIFAR S, AMERI M, IMAN B. An experimental study of subcooled flow boiling of water in the horizontal and vertical direction of a metal-foam tube[J]. Thermal Science and Engineering Progress, 2020, 20(1): 100748.
    [12]
    WANG J, CHENG Y, LI X B, et al. Experimental and LBM simulation study on the effect of bubbles merging on flow boiling[J]. International Journal of Heat and Mass Transfer, 2019, 132: 1053-1061. doi: 10.1016/j.ijheatmasstransfer.2018.11.140
    [13]
    VONTAS K, ANDREDAKI M, GEORGOULAS A, et al. The effect of surface wettability on flow boiling characteristics within microchannels[J]. International Journal of Heat and Mass Transfer, 2021, 172: 121133. doi: 10.1016/j.ijheatmasstransfer.2021.121133
    [14]
    SUN T, GUI N, YANG X, et al. Numerical study of patterns and influencing factors on flow boiling in vertical tubes by thermal LBM simulation[J]. International Communications in Heat and Mass Transfer, 2017, 86: 32-41. doi: 10.1016/j.icheatmasstransfer.2017.05.014
    [15]
    YADAV A, ROY S. Void fraction distribution for convective boiling flows in single and multiple heater rods assembly[J]. Chemical Engineering Science, 2022, 247: 117063. doi: 10.1016/j.ces.2021.117063
    [16]
    BALTIS C, GELD C. Experimental investigation of the thermal interactions of nucleation sites in flow boiling[J]. International Journal of Heat and Mass Transfer, 2014, 78(11): 1208-1218.
    [17]
    CHENG M, ZHANG B, LOU J. A hybrid LBM for flow with particles and drops[J]. Computers & Fluids, 2017, 155(20): 62-67.
    [18]
    SONG F, WANG W, LI J. A lattice Boltzmann method for particle-fluid two-phase flow[J]. Chemical Engineering Science, 2013, 102: 442-450. doi: 10.1016/j.ces.2013.08.037
    [19]
    LI Q, KANG Q, FRANCOIS M, et al. Lattice Boltzmann modeling of boiling heat transfer: the boiling curve and the effects of wettability[J]. International Journal of Heat and Mass Transfer, 2015, 85: 787-796. doi: 10.1016/j.ijheatmasstransfer.2015.01.136
    [20]
    YUAN P, SCHAEFER L. Equations of state in a lattice Boltzmann model[J]. Physics of Fluids, 2006, 18: 042101. doi: 10.1063/1.2187070
    [21]
    ZHANG T, SHI B, GUO Z, et al. General bounce-back scheme for concentration boundary condition in the lattice-Boltzmann method[J]. Physical Review E, 2012, 85: 016701. doi: 10.1103/PhysRevE.85.016701
    [22]
    FRITZ W. Berechnung des maximal volumes von Dampfblasen[J]. Physik Zeitschr, 1935, 36: 379-384.
    [23]
    FENG Y, CHANG F, HU Z, et al. Investigation of pool boiling heat transfer on hydrophilic-hydrophobic mixed surface with micro-pillars using LBM[J]. International Journal of Thermal Sciences, 2021, 163: 106814. doi: 10.1016/j.ijthermalsci.2020.106814
    [24]
    GONG S, CHENG P. Lattice Boltzmann simulations for surface wettability effects in saturated pool boiling heat transfer[J]. International Journal of Heat and Mass Transfer, 2015, 85: 635-646. doi: 10.1016/j.ijheatmasstransfer.2015.02.008
    [25]
    GONG S, CHENG P. Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling[J]. International Journal of Heat and Mass Transfer, 2013, 64: 122-132. doi: 10.1016/j.ijheatmasstransfer.2013.03.058
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (524) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return