Volume 43 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
ZHUO Yingpeng, WANG Gang, QI Zhaohui, ZHANG Jian. A Spatial Geometric Nonlinearity Spline Beam Element With Nodal Parameters Containing Strains[J]. Applied Mathematics and Mechanics, 2022, 43(9): 987-1003. doi: 10.21656/1000-0887.420290
Citation: ZHUO Yingpeng, WANG Gang, QI Zhaohui, ZHANG Jian. A Spatial Geometric Nonlinearity Spline Beam Element With Nodal Parameters Containing Strains[J]. Applied Mathematics and Mechanics, 2022, 43(9): 987-1003. doi: 10.21656/1000-0887.420290

A Spatial Geometric Nonlinearity Spline Beam Element With Nodal Parameters Containing Strains

doi: 10.21656/1000-0887.420290
  • Received Date: 2021-09-22
  • Rev Recd Date: 2021-12-17
  • Available Online: 2022-08-01
  • Publish Date: 2022-09-30
  • Many slender rods in engineering can be modeled as Euler-Bernoulli beams. For the analysis of their dynamic behaviors, it is necessary to establish the dynamic models for the flexible multi-body systems. Geometric nonlinear elements with absolute nodal coordinates help solve a large number of dynamic problems of flexible beams, but they still face such problems as shear locking, nodal stress discontinuity and low computation efficiency. Based on the theory of large deformation beams’ virtual power equations, the functional formulas between displacements and rotation angles at the nodes were established, which can satisfy the deformation coupling relationships. The generalized strains to describe geometric nonlinear effects in this case were derived. Some parameters of boundary nodes were replaced by axial strains and sectional curvatures to obtain a more accurate and concise constraint method for applying external forces. To improve the numerical efficiency and stability of the system’s motion equations, a model-smoothing method was used to filter high frequencies out of the model. The numerical examples verify the rationality and effectiveness of the proposed element.

  • loading
  • [1]
    LI L, ZHANG D G, GUO Y B. Dynamic modeling and analysis of a rotating flexible beam with smart ACLD treatment[J]. Composites Part B: Engineering, 2017, 131: 221-236. doi: 10.1016/j.compositesb.2017.07.050
    [2]
    LE T N, BATTINI J M, HJIAJ M. A consistent 3D corotational beam element for nonlinear dynamic analysis of flexible structures[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 269: 538-565. doi: 10.1016/j.cma.2013.11.007
    [3]
    王单, 王健. 重力载荷作用下柔性梁的结构变形与承载力分析[J]. 应用数学和力学, 2021, 42(6): 611-622

    WANG Dan, WANG Jian. Analysis of deformation and bearing capacity of flexible beams under gravitational loads[J]. Applied Mathematics and Mechanics, 2021, 42(6): 611-622.(in Chinese)
    [4]
    周兰伟, 陈国平, 孙东阳. 高速旋转柔性梁刚柔耦合动力学分析[J]. 振动与冲击, 2017, 36(5): 142-146 doi: 10.13465/j.cnki.jvs.2017.05.022

    ZHOU Lanwei, CHEN Guoping, SUN Dongyang. Rigid-flexible coupled dynamic analysis for a high-speed spinning flexible beam[J]. Journal of Vibration and Shock, 2017, 36(5): 142-146.(in Chinese) doi: 10.13465/j.cnki.jvs.2017.05.022
    [5]
    黄永安, 邓子辰, 姚林晓. 考虑大变形的刚-柔耦合旋转智能结构动力学分析[J]. 应用数学和力学, 2007, 28(10): 1203-1212

    HUANG Yongan, DENG Zichen, YAO Linxiao. Dynamic analysis of a rotating rigid-flexible coupled smart structure with large deformation[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1203-1212.(in Chinese)
    [6]
    孟阳君, 张家生. 杆系结构的大变形几何非线性分析[J]. 铁道科学与工程学报, 2018, 15(8): 2034-2039 doi: 10.19713/j.cnki.43-1423/u.2018.08.017

    MENG Yangjun, ZHANG Jiasheng. A large deformation geometric nonlinear analysis for frame structure[J]. Journal of Railway Science and Engineering, 2018, 15(8): 2034-2039.(in Chinese) doi: 10.19713/j.cnki.43-1423/u.2018.08.017
    [7]
    吴庆雄, 陈宝春, 韦建刚. 三维杆系结构的几何非线性有限元分析[J]. 工程力学, 2007, 24(12): 19-24 doi: 10.3969/j.issn.1000-4750.2007.12.004

    WU Qingxiong, CHEN Baochun, WEI Jiangang. A geometric nonlinear finite element analysis for 3D framed structures[J]. Engineering Mechanics, 2007, 24(12): 19-24.(in Chinese) doi: 10.3969/j.issn.1000-4750.2007.12.004
    [8]
    叶康生, 陆天天, 袁驷. 结构几何非线性分析中分叉失稳的直接求解[J]. 工程力学, 2011, 28(8): 1-8

    YE Kangsheng, LU Tiantian, YUAN Si. A direct method for the computation of bifurcation buckling in geometric nonlinear analysis of structures[J]. Engineering Mechanics, 2011, 28(8): 1-8.(in Chinese)
    [9]
    WEMPNER G. Finite elements, finite rotations and small strains of flexible shells[J]. International Journal of Solids & Structures, 1969, 5(2): 117-153.
    [10]
    BELYTSCHKO T, HSIEH B J. Non-linear transient finite element analysis with convected co-ordinates[J]. International Journal for Numerical Methods in Engineering, 1973, 7(3): 255-271. doi: 10.1002/nme.1620070304
    [11]
    史加贝, 刘铸永, 洪嘉振. 柔性多体动力学的共旋坐标法[J]. 力学季刊, 2017, 38(2): 23-40 doi: 10.15959/j.cnki.0254-0053.2017.02.002

    SHI Jiabei, LIU Zhuyong, HONG Jiazhen. The co-rotational formulation for flexible multibody dynamics[J]. Chinese Quarterly of Mechanics, 2017, 38(2): 23-40.(in Chinese) doi: 10.15959/j.cnki.0254-0053.2017.02.002
    [12]
    CHHANG S, SANSOUR C, HJIAJ M, et al. An energy-momentum co-rotational formulation for nonlinear dynamics of planar beams[J]. Computers and Structures, 2017, 187: 50-63. doi: 10.1016/j.compstruc.2017.03.021
    [13]
    CHO H, KIM H, SHIN S. Geometrically nonlinear dynamic formulation for three-dimensional co-rotational solid elements[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 328: 301-320. doi: 10.1016/j.cma.2017.08.037
    [14]
    KANE T R, RYAN R, BANERJEE A K. Dynamics of a cantilever beam attached to a moving base[J]. Journal of Guidance, Control, and Dynamics, 1987, 10(2): 139-151. doi: 10.2514/3.20195
    [15]
    杨辉, 洪嘉振, 余征跃. 动力刚化问题的实验研究[J]. 力学学报, 2004, 36(1): 118-124 doi: 10.3321/j.issn:0459-1879.2004.01.019

    YANG Hui, HONG Jiazhen, YU Zhengyue. Experimental investigation on dynamic stiffening phenomenon[J]. Theoretical and Applied Mechanics, 2004, 36(1): 118-124.(in Chinese) doi: 10.3321/j.issn:0459-1879.2004.01.019
    [16]
    SIMO J C. A finite strain beam formulation, the three-dimensional dynamic problem, part Ⅰ[J]. Computer Methods in Applied Mechanics & Engineering, 1985, 49(1): 55-70.
    [17]
    SIMO J C, VU-QUOC L. A three-dimensional finite-strain rod model, part Ⅱ: computational aspects[J]. Computer Methods in Applied Mechanics & Engineering, 1986, 58(1): 79-116.
    [18]
    ROMERO I. A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations[J]. Multibody System Dynamics, 2008, 20(1): 51-68. doi: 10.1007/s11044-008-9105-7
    [19]
    吴坛辉, 洪嘉振, 刘铸永. 非线性几何精确梁理论研究综述[J]. 中国科技论文, 2013, 8(11): 1126-1130 doi: 10.3969/j.issn.2095-2783.2013.11.012

    WU Tanhui, HONG Jiazhen, LIU Zhuyong. Advances of geometrically exact 3D beam theory[J]. China Sciencepaper, 2013, 8(11): 1126-1130.(in Chinese) doi: 10.3969/j.issn.2095-2783.2013.11.012
    [20]
    吕品, 廖明夫, 徐阳, 等. 基于几何精确梁理论的风力机叶片单元[J]. 太阳能学报, 2015, 36(10): 2422-2428 doi: 10.3969/j.issn.0254-0096.2015.10.017

    LÜ Pin, LIAO Mingfu, XU Yang, et al. Beam finite element for wind turbine blade based on geometrically exact beam theory[J]. Acta Energlae Solaris Sinica, 2015, 36(10): 2422-2428.(in Chinese) doi: 10.3969/j.issn.0254-0096.2015.10.017
    [21]
    ROMERO I, ARMERO F. An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum scheme in dynamics[J]. International Journal for Numerical Methods in Engineering, 2002, 54(12): 1683-1716. doi: 10.1002/nme.486
    [22]
    CRISFIELD M A, JELENIC G. Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation[J]. Proceedings Mathematical Physical & Engineering Sciences, 1999, 455(1983): 1125-1147.
    [23]
    ZUPAN D, SAJE M. The three-dimensional beam theory: finite element formulation based on curvature[J]. Computers & Structures, 2003, 81(18/19): 1875-1888.
    [24]
    ZUPAN D, SAJE M. The linearized three-dimensional beam theory of naturally curved and twisted beams: the strain vectors formulation[J]. Computer Methods in Applied Mechanics & Engineering, 2006, 195(33/36): 4557-4578.
    [25]
    ČEŠAREK P, SAJE M, ZUPAN D. Dynamics of flexible beams: finite-element formulation based on interpolation of strain measures[J]. Finite Elements in Analysis & Design, 2013, 72: 47-63.
    [26]
    田强, 张云清, 陈立平, 等. 柔性多体系统动力学绝对节点坐标方法研究进展[J]. 力学进展, 2010, 40(2): 189-202 doi: 10.6052/1000-0992-2010-2-J2009-024

    TIAN Qiang, ZHANG Yunqing, CHEN Liping. et al. Advances in the absolute nodal coordinate method for the flexible multibody dynamics[J]. Advances in Mechanics, 2010, 40(2): 189-202.(in Chinese) doi: 10.6052/1000-0992-2010-2-J2009-024
    [27]
    田强, 刘铖, 李培, 等. 多柔体系统动力学研究进展与挑战[J]. 动力学与控制学报, 2017, 15(5): 385-405 doi: 10.6052/1672-6553-2017-039

    TIAN Qiang, LIU Cheng, LI Pei, et al. Advances and challenges in dynamics of flexible multibody systems[J]. Journal of Dynamics and Control, 2017, 15(5): 385-405.(in Chinese) doi: 10.6052/1672-6553-2017-039
    [28]
    HAN Ling, LIU Ying, YANG Bin, et al. Dynamic modeling and simulation of flexible beam finite rotation with ANCF method and FFR method[J]. Mechanika, 2018, 24(5): 715-724.
    [29]
    GERSTMAYR J, SUGIYAMA H, MIKKOLA A. Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems[J]. Journal of Computational and Nonlinear Dynamics, 2013, 8(3): 031016. doi: 10.1115/1.4023487
    [30]
    LI L, CHEN Y Z, ZHANG D G, et al. Large deformation and vibration analysis of microbeams by absolute nodal coordinate formulation[J]. International Journal of Structural Stability and Dynamics, 2019, 19(4): 1950049. doi: 10.1142/S0219455419500494
    [31]
    王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003.

    WANG Xucheng. Finite Element Method[M]. Beijing: Tsinghua Press, 2003. (in Chinese)
    [32]
    齐朝晖, 曹艳, 王刚. 多柔体系统数值分析的模型降噪方法[J]. 力学学报, 2018, 50(4): 863-870 doi: 10.6052/0459-1879-18-111

    QI Zhaohui, CAO Yan, WANG Gang. Model smoothing methods in numerical analysis of flexible multibody systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 863-870.(in Chinese) doi: 10.6052/0459-1879-18-111
    [33]
    许晶, 李世尧, 王斌泰, 等. 解析型Timoshenko梁有限单元[J]. 西南交通大学学报, 2019, 54(3): 492-498 doi: 10.3969/j.issn.0258-2724.20180176

    XU Jing, LI Shiyao, WANG Bintai, et al. Analytical finite element for Timoshenko beams[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 492-498.(in Chinese) doi: 10.3969/j.issn.0258-2724.20180176
    [34]
    周厚德. 岩土工程中条状和板状结构的有限元分析研究[D]. 硕士学位论文. 北京: 清华大学, 2007.

    ZHOU Houde. Study on strip and slab structures in geotechnical engineering by FEM[D]. Master Thesis. Beijing: Tsinghua University, 2007. (in Chinese)
    [35]
    LE T N, BATTINI J M, HJIAJ M. Dynamics of 3D beam elements in a corotational context: a comparative study of established and new formulations[J]. Finite Elements in Analysis and Design, 2012, 61: 97-111. doi: 10.1016/j.finel.2012.06.007
    [36]
    MÄKINEN J. Total Lagrangian Reissner’s geometrically exact beam element without singularities[J]. International Journal for Numerical Methods in Engineering, 2010, 70(9): 1009-1048.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(3)

    Article Metrics

    Article views (645) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return