Volume 43 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
CAO Yanhua, ZHANG Zitong, LI Nan. A Space-Time Polynomial Collocation Method for Solving 3D Burgers Equations[J]. Applied Mathematics and Mechanics, 2022, 43(9): 1045-1052. doi: 10.21656/1000-0887.420282
Citation: CAO Yanhua, ZHANG Zitong, LI Nan. A Space-Time Polynomial Collocation Method for Solving 3D Burgers Equations[J]. Applied Mathematics and Mechanics, 2022, 43(9): 1045-1052. doi: 10.21656/1000-0887.420282

A Space-Time Polynomial Collocation Method for Solving 3D Burgers Equations

doi: 10.21656/1000-0887.420282
  • Received Date: 2021-09-13
  • Rev Recd Date: 2022-07-08
  • Available Online: 2022-08-29
  • Publish Date: 2022-09-30
  • As a class of nonlinear partial differential equations, the Burgers equations are widely used in various fields. A new space-time polynomial collocation method was presented for particular solutions to 3D Burgers equations. The basic process was divided into 2 steps. The 1st step is to find the polynomial particular solutions of the linear differential operator terms (including the time differential term) in the governing equation. The 2nd step is to solve the nonlinear term of the 3D Burgers equation iteratively. The proposed method is simple and easy to program. The approximate solution has high accuracy. Especially, the stability of the method is excellent, which improves the programming simplicity and deepens the understanding of high-dimensional Burgers equations and the practical application.

  • loading
  • [1]
    BURGER J M. A mathematical model illustrating the theory of turbulence[J]. Advances in Applied Mechanics, 1948, 1: 171-199.
    [2]
    HOPF E. The partial differential equation $u_t + uu_x =\mu_xx $[J]. Communications on Pure and Applied Mathematics, 1950, 3(3): 201-230. doi: 10.1002/cpa.3160030302
    [3]
    HASSANIEN I A, SALAMA A A, HOSHAM H A J. Fourth-order finite difference method for solving Burgers’ equation[J]. Applied Mathematics and Computation, 2005, 170(2): 781-800. doi: 10.1016/j.amc.2004.12.052
    [4]
    COLE J D. On a quasi-linear parabolic equation occurring in aerodynamics[J]. Quarterly of Applied Mathematics, 1951, 9(3): 225-236. doi: 10.1090/qam/42889
    [5]
    包立平, 胡玉博, 吴立群. 具有初值间断的Burgers方程奇摄动解[J]. 应用数学和力学, 2020, 41(7): 807-816

    BAO Liping, HU Yubo, WU Liqun. Singularly perturbed solutions of Burgers equations with initial value discontinuities[J]. Applied Mathematics and Mechanics, 2020, 41(7): 807-816.(in Chinese)
    [6]
    包立平, 洪文珍. 一维弱噪声随机Burgers方程的奇摄动解[J]. 应用数学和力学, 2018, 39(1): 113-122.

    BAO Liping, HONG Wenzhen. Singular perturbation solutions to 1D stochastic Burgers equations under weak noises[J]. Applied Mathematics and Mechanics, 2018, 39(1): 113-122. (in Chinese)
    [7]
    朱位秋. 几类非线性系统对白噪声参激与/或外激平稳响应的精确解[J]. 应用数学和力学, 1990, 11(2): 155-164

    ZHU Weiqiu. Exact solutions for stationary responses of several classes of nonlinear systems to parametric and/or external white noise excitations[J]. Applied Mathematics and Mechanics, 1990, 11(2): 155-164.(in Chinese)
    [8]
    GULSU M. A finite difference approach for solution of Burgers’ equation[J]. Applied Mathematics and Computation, 2006, 175(2): 1245-1255. doi: 10.1016/j.amc.2005.08.042
    [9]
    CALDWELL J, WANLESS P. Solution of Burgers’ equation for large Reynolds number using finite elements with moving nodes[J]. Applied Mathematical Modelling, 1987, 11(3): 211-214. doi: 10.1016/0307-904X(87)90005-9
    [10]
    TURGUT Z, ASLAN Y. The semi-approximate approach for solving Burgers’ equation with high Reynolds number[J]. Applied Mathematics and Computation, 2005, 163(1): 131-145. doi: 10.1016/j.amc.2004.01.032
    [11]
    HASHEMIAN A, SHODJA H M. A meshless approach for solution of Burgers’ equation[J]. Journal of Computational and Applied Mathematics, 2008, 220(1): 226-239.
    [12]
    ZHANG X H, OUYANG J, ZHANG L. Element-free characteristic Galerkin method for Burgers’ equation[J]. Engineering Analysis With Boundary Elements, 2009, 33(3): 356-362. doi: 10.1016/j.enganabound.2008.07.001
    [13]
    CHEN R, WU Z. Applying multiquadric quasi-interpolation to solve Burgers’ equation[J]. Applied Mathematics and Computation, 2006, 172(1): 472-484. doi: 10.1016/j.amc.2005.02.027
    [14]
    HON Y C, MAO X Z. An efficient numerical scheme for Burgers’ equation[J]. Applied Mathematics and Computation, 1999, 95(1): 37-50.
    [15]
    MOHAMMADI M, MOKHTARI R, PANAHIPOUR H. A Galerkin-reproducing kernel method: application to the 2D nonlinear coupled Burgers’ equations[J]. Engineering Analysis With Boundary Elements, 2013, 37(12): 1642-1652. doi: 10.1016/j.enganabound.2013.09.005
    [16]
    ZHANG X, TIAN H, CHEN W. Local method of approximate particular solutions for two-dimensional unsteady Burgers’ equations[J]. Computers and Mathematics With Applications, 2014, 66(12): 2425-2432. doi: 10.1016/j.camwa.2013.10.009
    [17]
    ZHENG H, ZHANG C, WANG Y. Band structure computation of in-plane elastic waves in 2D phononic crystals by a meshfree local RBF collocation method[J]. Engineering Analysis With Boundary Elements, 2016, 66: 77-90. doi: 10.1016/j.enganabound.2016.01.012
    [18]
    TEZDUYAR T E, SATHE S, KEEDY R. Space-time finite element techniques for computation of fluid-structure interactions[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(17/18): 2002-2027. doi: 10.1016/j.cma.2004.09.014
    [19]
    KLAIJ C M, DER VAN J J, DER VAN H V. Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations[J]. Journal of Computational Physics, 2006, 217(2): 589-611. doi: 10.1016/j.jcp.2006.01.018
    [20]
    MOHAMMED H, AHMED N, ABDELLATIF C. Space-time localized radial basis function collocation method for solving parabolic and hyperbolic equations[J]. Engineering Analysis With Boundary Elements, 2016, 67: 152-163. doi: 10.1016/j.enganabound.2016.03.009
    [21]
    DANGAL T R, CHEN C S, LIN J. Polynomial particular solutions for solving elliptic partial differential equations[J]. Computers and Mathematics With Applications, 2017, 73(1): 60-70. doi: 10.1016/j.camwa.2016.10.024
    [22]
    CAO Y H, CHEN C S, ZHENG H. Space-time polynomial particular solutions method for solving time-dependent problems[J]. Numerical Heat Transfer, Part B: Fundamentals, 2020, 77(3): 181-194. doi: 10.1080/10407790.2019.1693199
    [23]
    CAO Y H, LI N, ZHANG Z T. The method of polynomial particular solutions for solving ordinary differential equations[J]. Mathematica Applicata, 2020, 33(2): 295-307.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (611) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return