Citation: | PENG Mengyao, GU Shuitao, ZHOU Yangjing, WANG Shimeng, FENG Zhiqiang. Development and Application of Fatigue Life Evaluation Software LtsFatigue Based on LiToSim[J]. Applied Mathematics and Mechanics, 2022, 43(9): 976-986. doi: 10.21656/1000-0887.420277 |
For the fatigue problem of structures under random loads, the numerical calculation program for structural fatigue analysis was embedded into the self-developed LiToSim platform. Based on the LiToSim platform, fatigue software LtsFatigue was developed, and the structure fatigue life was calculated by means of the time domain fatigue algorithm, where the stress time history was processed and calculated with the rainflow counting method. The frequency domain fatigue algorithm was introduced to estimate the fatigue life based on the stress response power spectrum and the distribution of stress cycles. The comparison through the gear example with the commercial software verifies the calculation accuracy of the time domain and frequency domain methods of the LtsFatigue customized fatigue software. The frequency domain algorithm has greatly improved computational efficiency, and highlights the advantages of the LtsFatigue software. The development of the LtsFatigue customized software based on the LiToSim platform has significant application value for fatigue simulations of large complex structures.
[1] |
徐灏. 结构疲劳强度研究的现况及进展[J]. 机械强度, 1980(1): 1-6 doi: 10.16579/j.issn.1001.9669.1980.01.001
XU Hao. Current situation and development of structural fatigue strength research[J]. Journal of Mechanical Strength, 1980(1): 1-6.(in Chinese) doi: 10.16579/j.issn.1001.9669.1980.01.001
|
[2] |
尚德广. 疲劳强度理论[M]. 北京: 科学出版社, 2017.
SHANG Deguang. Fatigue Strength Theory[M]. Beijing: Science Press, 2017. (in Chinese)
|
[3] |
徐灏. 疲劳强度[M]. 北京: 高等教育出版社, 1988.
XU Hao. Fatigue Strength[M]. Beijing: Higher Education Press, 1988. (in Chinese)
|
[4] |
欧进萍, 王光远. 结构随机振动[M]. 北京: 高等教育出版社, 1998.
OU Jinping, WANG Guangyuan. Random Vibration of Structures[M]. Beijing: Higher Education Press, 1998. (in Chinese)
|
[5] |
冯胜, 程燕平, 赵亚丽, 等. 线性疲劳损伤累积理论的研究[J]. 哈尔滨工业大学学报, 2003, 35(5): 608-610 doi: 10.3321/j.issn:0367-6234.2003.05.024
FENG Sheng, CHENG Yanping, ZHAO Yali, et al. Linear fatigue damage cumulation theory[J]. Journal of Harbin Institute of Technology, 2003, 35(5): 608-610.(in Chinese) doi: 10.3321/j.issn:0367-6234.2003.05.024
|
[6] |
冯胜, 程燕平, 赵亚丽, 等. 非线性疲劳损伤累积理论研究[J]. 哈尔滨工业大学学报, 2003, 35(12): 1507-1509 doi: 10.3321/j.issn:0367-6234.2003.12.030
FENG Sheng, CHENG Yanping, ZHAO Yali, et al. Unlinear fatigue damage cumulative theory[J]. Journal of Harbin Institute of Technology, 2003, 35(12): 1507-1509.(in Chinese) doi: 10.3321/j.issn:0367-6234.2003.12.030
|
[7] |
RYCHLIK I. Characterization of Random Fatigue Loads[M]. Vienna: Springer, 1993.
|
[8] |
REPETTO M P. Cycle counting methods for bi-modal stationary Gaussian processes[J]. Probabilistic Engineering Mechanics, 2005, 20(3): 229-238. doi: 10.1016/j.probengmech.2005.05.004
|
[9] |
ENDO T, MATSUISHI M, MITSUNAGA K, et al. Rain flow method, the proposal and the applications[J]. Bulletin of the Kyushu Institute of Technology Science & Technology, 1974.
|
[10] |
姜言. 基于T-B谱方法的风致疲劳分析以及在桥梁主梁抖振疲劳中的应用[D]. 博士学位论文. 成都: 西南交通大学, 2019.
JIANG Yan. Wind induced fatigue analysis using T-B spectrum method and its application on buffeting fatigue of bridge girder[D]. PhD Thesis. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
|
[11] |
DONG W, MOAN T, GAO Z. Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection[J]. Reliability Engineering & System Safety, 2012, 106: 11-27.
|
[12] |
YANG Y, BASHIR M, WANG J, et al. Wind-wave coupling effects on the fatigue damage of tendons for a 10 MW multi-body floating wind turbine[J]. Ocean Engineering, 2020, 217(1): 107909.
|
[13] |
LOW Y M. An algorithm for accurate evaluation of the fatigue damage due to multimodal and broadband processes[J]. Probabilistic Engineering Mechanics, 2011, 26(3): 435-446. doi: 10.1016/j.probengmech.2011.01.002
|
[14] |
WIRSCHING P H, LIGHT M C. Fatigue under wide band random stresses[J]. Journal of the Structural Division, 1980, 106(7): 1593-1607. doi: 10.1061/JSDEAG.0005477
|
[15] |
ZHAO W, BAKER M J. On the probability density function of rainflow stress range for stationary Gaussian processes[J]. International Journal of Fatigue, 1992, 14(2): 121-135. doi: 10.1016/0142-1123(92)90088-T
|
[16] |
DIRLIK T. Application of computers in fatigue analysis[D]. PhD Thesis. West Midlands: University of Warwick, 1985.
|
[17] |
BENASCIUTTI D, TOVO R. Spectral methods for lifetime prediction under wide-band stationary random processes[J]. International Journal of Fatigue, 2005, 27(8): 867-877. doi: 10.1016/j.ijfatigue.2004.10.007
|
[18] |
冯志强, 刘建涛, 彭磊, 等. 自主CAE平台及计算力学软件研发新进展[J]. 西南交通大学学报, 2016, 51(3): 519-524 doi: 10.3969/j.issn.0258-2724.2016.03.010
FENG Zhiqiang, LIU Jiantao, PENG Lei, et al. New development of CAE platform and computational mechanics software[J]. Journal of Southwest Jiaotong University, 2016, 51(3): 519-524.(in Chinese) doi: 10.3969/j.issn.0258-2724.2016.03.010
|
[19] |
KIHL D P, SARKANI S. Mean stress effects in fatigue of welded steel joints[J]. Probabilistic Engineering Mechanics, 1999, 14(1/2): 97-104.
|
[20] |
BENASCIUTTI D. Some analytical expressions to measure the accuracy of the “equivalent von Mises stress” in vibration multiaxial fatigue[J]. Journal of Sound and Vibration, 2014, 333(18): 4326-4340. doi: 10.1016/j.jsv.2014.04.047
|
[21] |
朱颖. 金属屋盖构件风致疲劳损伤估计[D]. 博士学位论文. 北京: 北京交通大学, 2018.
ZHU Ying. Assessment of wind-induced fatigue damage of metal roof components[D]. PhD Thesis. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
|
[22] |
FRENDAHL M, RYCHLIK I. Rainflow analysis: Markov method[J]. International Journal of Fatigue, 1993, 15(4): 265-272. doi: 10.1016/0142-1123(93)90375-Z
|
[23] |
DING J, CHEN X. Fatigue damage evaluation of broad-band Gaussian and non-Gaussian wind load effects by a spectral method[J]. Probabilistic Engineering Mechanics, 2015, 41: 139-154. doi: 10.1016/j.probengmech.2015.06.005
|
[24] |
叶彦鹏, 顾水涛, 刘敏, 等. 基于LiToSim平台的海上风机过渡段优化软件开发[J]. 应用数学和力学, 2021, 42(5): 441-451
YE Yanpeng, GU Shuitao, LIU Min, et al. Optimization software development for offshore turbine transition structures based on LiToSim[J]. Applied Mathematics and Mechanics, 2021, 42(5): 441-451.(in Chinese)
|
[25] |
周洋靖, 冯志强, 宁坡, 等. 金属成形数值模拟算法及软件开发[J]. 西南交通大学学报, 2019, 54(4): 855-862 doi: 10.3969/j.issn.0258-2724.20170442
ZHOU Yangjing, FENG Zhiqiang, NING Po, et al. Numerical algorithm and software development for metal forming[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 855-862.(in Chinese) doi: 10.3969/j.issn.0258-2724.20170442
|
[26] |
LIU Y, CHENG L, ZENG Q, et al. PCLab-A software with interactive graphical user interface for Monte Carlo and finite element analysis of microstructure-based layered composites[J]. Advances in Engineering Software, 2015, 90: 53-62. doi: 10.1016/j.advengsoft.2015.06.016
|
[27] |
PENG L, FENG Z, JOLI P, et al. LiToTac: an interactive-interface software for finite element analysis of multiple contact dynamics[J]. Computer Modeling in Engineering & Sciences, 2019, 118(1): 111-137.
|
[28] |
姜殿恒, 陈飙松, 张盛, 等. 基于SiPESC平台的声子晶体能带结构分析算法研究及软件实现[J/OL]. 工程力学, 2022. DOI: 10.6052/j.issn.1000-4750.2021.07.0563.
JIANG Dianheng, CHEN Biaosong, ZHANG Sheng, et al. Reserach and software implementation of energy band structure analysis algorithm of phononic crystals based on SiPESC platform[J/OL]. Engineering Mechanics, 2022. DOI: 10.6052/j.issn.1000-4750.2021.07.0563. (in Chinese)
|