Citation: | LIANG Qing. Asymptotic Properties of the Solutions to a Class of Perturbed Stochastic Impulsive Functional Differential Equations[J]. Applied Mathematics and Mechanics, 2022, 43(9): 1034-1044. doi: 10.21656/1000-0887.420267 |
The asymptotic properties of the solutions to a class of perturbed stochastic impulsive functional differential equations were investigated. Through comparison of the solution to the perturbed equation with the solution to the corresponding unperturbed one, the sufficient conditions for these solutions to be close in a finite time interval were derived. Then, when small perturbations approach zero and the length of the time interval approaches infinity, the 2 solutions will still be close to each other. Finally, an example illustrates the effectiveness of the results.
[1] |
SONG R L, WANG B, ZHU Q X. Delay-dependent stability of non-linear hybrid stochastic functional differential equations[J]. IET Control Theory and Applications, 2020, 14(2): 198-206. doi: 10.1049/iet-cta.2019.0329
|
[2] |
ZHOU S B, XIE S F, FANG Z. Almost sure exponential stability of the backward Euler-Maruyama discretization for highly nonlinear stochastic functional differential equation[J]. Applied Mathematics and Computation, 2014, 236: 150-160. doi: 10.1016/j.amc.2014.03.010
|
[3] |
HU H X, XU L G. Existence and uniqueness theorems for periodic Markov process and applications to stochastic functional differential equations[J]. Journal of Mathematical Analysis and Applications, 2018, 466(1): 896-926. doi: 10.1016/j.jmaa.2018.06.025
|
[4] |
ZHOU S B. Exponential stability of numerical solution to neutral stochastic functional differential equation[J]. Applied Mathematics and Computation, 2015, 266: 441-461. doi: 10.1016/j.amc.2015.05.041
|
[5] |
马丽, 马瑞楠. 一类随机泛函微分方程带随机步长的EM逼近的渐近稳定[J]. 应用数学和力学, 2019, 40(1): 97-107 doi: 10.1007/s10483-019-2403-6
MA Li, MA Ruinan. Almost sure asymptotic stability of the Euler-Maruyama method with random variable stepsizes for stochastic functional differential equations[J]. Applied Mathematics and Mechanics, 2019, 40(1): 97-107.(in Chinese) doi: 10.1007/s10483-019-2403-6
|
[6] |
LIU L N, DENG F Q, HOU T. Almost sure exponential stability of implicit numerical solution for stochastic functional differential equation with extended polynomial growth condition[J]. Applied Mathematics and Computation, 2018, 330: 201-212. doi: 10.1016/j.amc.2018.02.031
|
[7] |
李霖. 具有无限时滞的随机泛函微分方程在分布意义下周期解的存在性[D]. 硕士学位论文. 长春: 东北师范大学, 2021.
LI Lin. The existence of periodic solutions for stochastic functional differential equations with infinite delay in distribution[D]. Master Thesis. Changchun: Northeast Normal University, 2021. (in Chinese)
|
[8] |
赵先梅. 带有Lévy噪音的中立型随机泛函微分方程的一般稳定性[D]. 硕士学位论文. 信阳: 信阳师范学院, 2021.
ZHAO Xianmei. General stability of neutral stochastic functional differential equations driven by Lévy noise[D]. Master Thesis. Xinyang: Xinyang Normal University, 2021. (in Chinese)
|
[9] |
肖可. 两类具Markov切换的中立型随机泛函微分方程解的指数稳定性[D]. 硕士学位论文. 成都: 四川师范大学, 2021.
XIAO Ke. Exponential stability of two kinds of NSFDEs with Markovian switching[D]. Master Thesis. Chengdu: Sichuan Normal University, 2021. (in Chinese)
|
[10] |
SONG M H, MAO X R. Almost sure exponential stability of hybrid stochastic functional differential equations[J]. Journal of Mathematical Analysis and Applications, 2018, 458: 1390-1408. doi: 10.1016/j.jmaa.2017.10.042
|
[11] |
WU F K, HU S G. Khasminskii-type theorems for stochastic functional differential equations with infinite delay[J]. Statistics and Probability Letters, 2011, 81(11): 1690-1694. doi: 10.1016/j.spl.2011.05.005
|
[12] |
XU D Y, LI B, LONG S J, et al. Moment estimate and existence for solutions of stochastic functional differential equations[J]. Nonlinear Analysis, 2014, 108: 128-143. doi: 10.1016/j.na.2014.05.004
|
[13] |
JOVANOVIĆ M, JANKOVIĆ S. Neutral stochastic functional differential equations with additive perturbations[J]. Applied Mathematics and Computation, 2009, 213(2): 370-379. doi: 10.1016/j.amc.2009.03.031
|
[14] |
JANKOVIĆ S, JOVANOVIĆ M. Perturbed stochastic hereditary differential equations with integral contractors[J]. Computers and Mathematics With Applications, 2001, 42(6/7): 871-881.
|
[15] |
ZHANG Q, REN Y. Perturbed nonlocal stochastic functional differential equations[J]. Qualitative Theory of Dynamical Systems, 2020, 19: 82. doi: 10.1007/s12346-020-00421-1
|
[16] |
李钊, 李树勇. 一类Markov切换的脉冲随机偏泛函微分方程的均方稳定性分析[J]. 系统科学与数学, 2020, 40(12): 2225-2236 doi: 10.12341/jssms14052
LI Zhao, LI Shuyong. Mean square stability analysis for a class of impulsive stochastic partial functional differential equations with Markovian switching[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(12): 2225-2236.(in Chinese) doi: 10.12341/jssms14052
|
[17] |
LI B. Stability of stochastic functional differential equations with impulses by an average approach[J]. Nonlinear Analysis: Hybrid Systems, 2018, 29: 221-233. doi: 10.1016/j.nahs.2018.02.002
|
[18] |
CARABALLO T, HAMMAMI M A, MCHIRI L. Practical exponential stability of impulsive stochastic functional differential equations[J]. Systems and Control Letters, 2017, 109: 43-48. doi: 10.1016/j.sysconle.2017.09.009
|
[19] |
CUI J, BI N N. Averaging principle for neutral stochastic functional differential equations with impulses and non-Lipschitz coefficients[J]. Statistics and Probability Letters, 2020, 163: 108775. doi: 10.1016/j.spl.2020.108775
|
[20] |
杨志昊. 具有非Lipschitz系数的中立型随机泛函微分方程[D]. 博士学位论文. 长沙: 中南大学, 2010.
YANG Zhihao. Neutral stochastic functional differential equations[D]. PhD Thesis. Changsha: Central South University, 2010. (in Chinese)
|