Volume 43 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
XUE Jianghong, HE Zanhang, XIA Fei, LI Zerong, JIN Fusong, YANG Peng. Size-Dependent Effects of Micro-Nano Mindlin Plates Based on the Couple Stress Theory[J]. Applied Mathematics and Mechanics, 2022, 43(7): 740-751. doi: 10.21656/1000-0887.420171
Citation: XUE Jianghong, HE Zanhang, XIA Fei, LI Zerong, JIN Fusong, YANG Peng. Size-Dependent Effects of Micro-Nano Mindlin Plates Based on the Couple Stress Theory[J]. Applied Mathematics and Mechanics, 2022, 43(7): 740-751. doi: 10.21656/1000-0887.420171

Size-Dependent Effects of Micro-Nano Mindlin Plates Based on the Couple Stress Theory

doi: 10.21656/1000-0887.420171
  • Received Date: 2021-06-22
  • Rev Recd Date: 2021-11-14
  • Publish Date: 2022-07-15
  • A Mindlin plate theory for micro-nano structures was proposed based on the couple stress theory. A length parameter was introduced to consider the size effect, and the constitutive equations for the micro-nano Mindlin plate were derived in view of the transverse shear deformation. The buckling and free vibration governing equations in terms of displacements and the slope functions of the shear deformation micro-nano plate were further deduced with the force equilibrium conditions. The analytical solutions of buckling and free vibration for the shear deformation micro-nano plate were obtained through separation of the displacement and rotation variables in space and time domains. Two scenarios of boundary conditions were analyzed: SSSS (simply supported by 4 edges) and SCSC (2 opposite edges simply supported and other 2 edges clamped). A MATLAB program was developed to compute the critical buckling and natural frequencies with different values of dimensional parameters, aspect ratios and length-to-thickness ratios. The research results, in comparison with those from the ABAQUS finite element analysis and previous literatures, are consistent with the latter ones. The examples show that, the size effects significantly influence the buckling load and the natural frequency.

  • loading
  • [1]
    FLECK N A, MULLER G M, ASHBY M F, et al. Strain gradient plasticity: theory and experiment[J]. Acta Metallurgica et Materialia, 1994, 42(2): 475-487. doi: 10.1016/0956-7151(94)90502-9
    [2]
    TOUPIN R A. Elastic materials with couple-stresses[J]. Archive for Rational Mechanics and Analysis, 1962, 11(1): 385-414. doi: 10.1007/BF00253945
    [3]
    MINDLIN R D. Influence of couple-stresses on stress concentrations[J]. Experimental Mechanics, 1963, 3(1): 1-7. doi: 10.1007/BF02327219
    [4]
    FLECK N A, HUTCHINSON J W. A phenomenological theory for strain gradient effects in plasticity[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(12): 1825-1857. doi: 10.1016/0022-5096(93)90072-N
    [5]
    YANG F, CHONG A C M, LAM D C C, et al. Couple stress based strain gradient theory for elasticity[J]. International Journal of Solids and Structures, 2002, 39(10): 2731-2743. doi: 10.1016/S0020-7683(02)00152-X
    [6]
    SIMSEK M. Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He’s variational method[J]. Composite Structures, 2014, 112(1): 264-272.
    [7]
    WANG Y G, LIN W H, LIU N. Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory[J]. Applied Mathematical Modelling, 2015, 39(1): 117-127. doi: 10.1016/j.apm.2014.05.007
    [8]
    WANG Y G, LIN W H, ZHOU C L, et al. Thermal postbuckling and free vibration of extensible microscale beams based on modified couple stress theory[J]. Journal of Mechanics, 2015, 31(1): 37-46. doi: 10.1017/jmech.2014.47
    [9]
    TSIATAS G C. A new Kirchhoff plate model based on a modified couple stress theory[J]. International Journal of Solids and Structures, 2009, 46(13): 2757-2764. doi: 10.1016/j.ijsolstr.2009.03.004
    [10]
    MA H M, GAO X L, REDDY J N. A non-classical Mindlin plate model based on a modified couple stress theory[J]. Acta Mechanica, 2011, 220(1/4): 217-235.
    [11]
    ZHOU S S, GAO X L. A nonclassical model for circular Mindlin plates based on a modified couple stress theory[J]. Journal of Applied Mechanics, 2014, 81(5): 1-8.
    [12]
    REDDY J N, BERRY J. Nonlinear theories of axisymmetric bending of functionally graded circular plates with modified couple stress[J]. Composite Structures, 2012, 94(12): 3664-3668. doi: 10.1016/j.compstruct.2012.04.019
    [13]
    GAO X, HUANG J, REDDY J. A non-classical third-order shear deformation plate model based on a modified couple stress theory[J]. Acta Mechanica, 2013, 224(11): 2699-2718. doi: 10.1007/s00707-013-0880-8
    [14]
    CHEN W J, LI L, XU M. A modified couple stress model for bending analysis of composite laminated beams with first order shear deformation[J]. Composite Structures, 2011, 93(11): 2723-2732. doi: 10.1016/j.compstruct.2011.05.032
    [15]
    李莉, 陈万吉, 郑楠. 修正偶应力理论层合薄板稳定性模型及尺度效应[J]. 工程力学, 2013, 30(5): 1-7. (LI Li, CHEN Wanji, ZHENG Nan. Model of composite laminated thin plate based on modified couple stress theory and buckling analysis of scale effect[J]. Engineering Mechanics, 2013, 30(5): 1-7.(in Chinese)

    LI Li, CHEN Wanji, ZHENG Nan. Model of composite laminated thin plate based on modified couple stress theory and buckling analysis of scale effect[J]. Engineering Mechanics, 2013, 30(5): 1-7. (in Chinese))
    [16]
    李莉, 陈万吉, 李小鹏. 修正偶应力理论层合薄板自由振动模型及尺度效应[J]. 大连理工大学学报, 2013, 53(3): 313-321. (LI Li, CHEN Wanji, LI Xiaopeng. Free vibration model of composite laminated thin plate based on modified couple stress theory and scale effects[J]. Journal of Dalian University of Technology, 2013, 53(3): 313-321.(in Chinese) doi: 10.7511/dllgxb201303001

    LI Li, CHEN Wanji, LI Xiaopeng. Free vibration model of composite laminated thin plate based on modified couple stress theory and scale effects[J]. Journal of Dalian University of Technology, 2013, 53(3): 313-321. (in Chinese)) doi: 10.7511/dllgxb201303001
    [17]
    CHEN W J, LI X P. Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory[J]. Archive of Applied Mechanics, 2013, 83(3): 431-444. doi: 10.1007/s00419-012-0689-2
    [18]
    陈万吉, 任鹤飞. 基于新修正偶应力理论的Mindlin层合板自由振动分析[J]. 工程力学, 2016, 33(12): 31-37, 43. (CHEN Wanji, REN Hefei. Free vibration analysis of a laminated composite Mindlin plate based on new modified couple stress theory[J]. Engineering Mechanics, 2016, 33(12): 31-37, 43.(in Chinese) doi: 10.6052/j.issn.1000-4750.2015.05.0394

    CHEN Wanji, REN Hefei. Free vibration analysis of a laminated composite Mindlin plate based on new modified couple stress theory[J]. Engineering Mechanics, 2016, 33(12): 31-37, 43. (in Chinese)) doi: 10.6052/j.issn.1000-4750.2015.05.0394
    [19]
    陈万吉, 薛继伟. 新修正偶应力理论Reddy型层合板稳定分析[J]. 计算力学学报, 2017, 34(2): 162-167. (CHEN Wanji, XUE Jiwei. Stability analysis of composite laminated Reddy plate based on new modified couple-stress theory[J]. Chinese Journal of Computational Mechanics, 2017, 34(2): 162-167.(in Chinese) doi: 10.7511/jslx201702006

    CHEN Wanji, XUE Jiwei. Stability analysis of composite laminated Reddy plate based on new modified couple-stress theory[J]. Chinese Journal of Computational Mechanics, 2017, 34(2): 162-167. (in Chinese)) doi: 10.7511/jslx201702006
    [20]
    周博, 王志勇, 赵飞, 等. Bernoulli-Euler微梁振动特性的尺寸效应[J]. 中国石油大学学报(自然科学版), 2021, 45(1): 151-157. (ZHOU Bo, WANG Zhiyong, ZHAO Fei, et al. Size effect of vibration characteristics of Bernoulli-Euler microbeam[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(1): 151-157.(in Chinese)

    ZHOU Bo, WANG Zhiyong, ZHAO Fei, et al. Size effect of vibration characteristics of Bernoulli-Euler microbeam[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(1): 151-157. (in Chinese))
    [21]
    张大千, 王云鹏, 王玺鉴. 各向异性修正偶应力Mindlin层合板的有限元热稳定性分析[J]. 沈阳航空航天大学学报, 2020, 37(2): 10-20. (ZHANG Daqian, WANG Yunpeng, WANG Xijian. Study on thermal stability of anisotropic modified coupled stressed Mindlin laminates by finite element methods[J]. Journal of Shenyang Aerospace University, 2020, 37(2): 10-20.(in Chinese) doi: 10.3969/j.issn.2095-1248.2020.02.002

    ZHANG Daqian, WANG Yunpeng, WANG Xijian. Study on thermal stability of anisotropic modified coupled stressed Mindlin laminates by element methods[J]. Journal of Shenyang Aerospace University, 2020, 37(2): 10-20. (in Chinese)) doi: 10.3969/j.issn.2095-1248.2020.02.002
    [22]
    PAGANO N J. Exact solutions for rectangular bidirectional composites and sandwich plates[J]. Journal of Composite Materials, 1970, 4(1): 20-34. doi: 10.1177/002199837000400102
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (516) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return