Citation: | YANG Jing, TAN Wenhui, WEI Zhouchao. Invariant Algebraic Surfaces of the Vallis System[J]. Applied Mathematics and Mechanics, 2022, 43(1): 84-93. doi: 10.21656/1000-0887.420112 |
The Darboux polynomials and invariant algebraic surfaces of the Vallis system were investigated. In the proofs, the weighted homogeneous polynomials and the characteristic curve method were used to solve linear partial differential equations. Finally, 3 types of Darboux polynomials for the Vallis system were obtained under suitable conditions of parameters.
[1] |
李小虎, 张定一, 宋自根. 时滞耦合惯性项神经系统的多混沌路径共存[J]. 应用数学和力学, 2020, 41(6): 636-645. (LI Xiaohu, ZHANG Dingyi, SONG Zigen. Multistage coexistence of different chaotic routes in a delayed neural system[J]. Applied Mathematics and Mechanics, 2020, 41(6): 636-645.(in Chinese)
|
[2] |
李海涛, 丁虎, 陈立群, 等. 三稳态能量收集系统的同宿分岔及混沌动力学分析[J]. 应用数学和力学, 2020, 41(12): 1311-1322. (LI Haitao, DING Hu, CHEN Liqun, et al. Homoclinic bifurcations and chaos thresholds of tristable piezoelectric vibration energy harvesting systems[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1311-1322.(in Chinese)
|
[3] |
DARBOUX G. Mémorire sur les équations différentielles algébriques du premier ordre et du premier degré(mélanges)[J]. Bulletin des Sciences Mathématiques, 1878, 2(10): 60-200.
|
[4] |
POINCARÉ H. Sur I’intégration algébrique des équations différentielles du premier ordre et du premier degré Ⅰ[J]. Rendiconti del Circolo Matematico di Palermo, 1891, 5: 161-191. doi: 10.1007/BF03015693
|
[5] |
马文秀. 一族Liouville可积的有限维Hamilton系统[J]. 应用数学和力学, 1992, 13(4): 349-357. (MA Wenxiu. A hierarchy of Liouville integrable finite-dimensional hamiltonian systems[J]. Applied Mathematics and Mechanics, 1992, 13(4): 349-357.(in Chinese)
|
[6] |
LABRUNIE S. On the polynomial first integrals of the (a, b, c) Lotka-Volterra system[J]. Journal of Mathematical Physics, 1996, 37(11): 5539-5550.
|
[7] |
OLLAGNIER J M. Rational integration of the Lotka-Volterra system[J]. Bulletin of Mathematical Sciences, 1999, 123(6): 437-466. doi: 10.1016/S0007-4497(99)00111-6
|
[8] |
LLIBRE J, ZHANG X. Invariant algebraic surfaces of the Rikitake system[J]. Journal of Physics A: Mathematical and Theoretical, 2000, 33(42): 7613-7635. doi: 10.1088/0305-4470/33/42/310
|
[9] |
LLIBRE J, ZHANG X. Invariant algebraic surfaces of the Lorenz system[J]. Journal of Mathematical Physics, 2002, 43(3): 1622-1645. doi: 10.1063/1.1435078
|
[10] |
SWINNERTON-DYER P. The invariant algebraic surfaces of the Lorenz system[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 2002, 132(3): 385-393. doi: 10.1017/S0305004101005667
|
[11] |
LÜ T H, ZHANG X. Darboux polynomials and algebraic integerability of the Chen system[J]. International Journal of Bifurcation and Chaos, 2007, 17(8): 2739-2748. doi: 10.1142/S0218127407018725
|
[12] |
DENG X J, CHEN A Y. Invariant algebraic surfaces of the Chen system[J]. International Journal of Bifurcation and Chaos, 2011, 21(6): 1645-1651. doi: 10.1142/S0218127411029331
|
[13] |
MURILO C, LLIBRE J, CLAUDIA V. Invariant algebraic surfaces and Hopf bifurcation of a finance model[J]. International Journal of Bifurcation and Chaos, 2018, 28(12): 1850150. doi: 10.1142/S021812741850150X
|
[14] |
AYBAR I K, AYBAR O O, DUKARIC M, et al. Dynamical analysis of a two prey-one predator system with quadratic self interaction[J]. Applied Mathematics and Computation, 2018, 333(15): 118-132.
|
[15] |
FERRAGUT A, GALINDO C, MONSERRAT F. On the computation of Darboux first integrals of a class of planar polynomial vector fields[J]. Journal of Mathematical Analysis and Applications, 2019, 478(2): 743-763. doi: 10.1016/j.jmaa.2019.05.052
|
[16] |
DIAS F S, LLIBRE J, VALLS C. Global dynamics of a virus model with invariant algebraic surfaces[J]. Rendiconti del Circolo Matematico di Palermo(Series 2)
|
[17] |
DIAS F S, VALLS C. Global dynamics of the Maxwell-Bloch system with invariant algebraic surfaces[J]. Dynamical Systems, 2020, 35(4): 668-681. doi: 10.1080/14689367.2020.1770202
|
[18] |
EGGER J. Stochastically driven large-scale circulations with multiple equilibria[J]. Journal of the Atmospheric Sciences, 1981, 38(12): 2606-2618. doi: 10.1175/1520-0469(1981)038<2606:SDLSCW>2.0.CO;2
|
[19] |
MCREARY J P, ANDERSON D L T. A simple model of El Niño and the southern oscillation[J]. Monthly Weather Review, 1984, 112: 934-946. doi: 10.1175/1520-0493(1984)112<0934:ASMOEN>2.0.CO;2
|
[20] |
CANE M A, ZEBIAK S E. A theory for El Niño and the southern oscillation[J]. Science, 1985, 228(4703): 1085-1087. doi: 10.1126/science.228.4703.1085
|
[21] |
ANDERSON D L T, MCREARY J P. Slowly propagating disturbances in a coupled ocean atmosphere model[J]. Journal of the Atmospheric Sciences, 1985, 42(6): 615-630. doi: 10.1175/1520-0469(1985)042<0615:SPDIAC>2.0.CO;2
|
[22] |
VALLIS G K. Conceptual models of El Niño and the southern oscillation[J]. Journal of Geophysical Research, 1988, 93: 13979-13991. doi: 10.1029/JC093iC11p13979
|
[23] |
KRISHCHENKO A, STARKOV K. Localization of compact invariant compact sets of nonlinear time varying systems[J]. International Journal of Bifurcation and Chaos, 2008, 18(5): 1599-1604. doi: 10.1142/S021812740802121X
|
[24] |
EUZEBIO R, LLIBRE J. Periodic solutions of El Niño model through the Vallis differential system[J]. Discrete and Continuous Dynamical Systems: A, 2014, 34(9): 3455-3469. doi: 10.3934/dcds.2014.34.3455
|
[25] |
GARAY B, INDIG B. Chaos in Vallis’ asymmetric Lorenz model for El Niño[J]. Chaos Solitons and Fractals, 2015, 75: 253-262. doi: 10.1016/j.chaos.2015.02.015
|
[26] |
BORGHEZAN M, RECH P C. Chaos and periodicity in Vallis model for El Niño[J]. Chaos Solitons and Fractals, 2017, 97: 15-18. doi: 10.1016/j.chaos.2017.01.018
|
[27] |
RAJAGOPAL K, JAFARI S, PHAM V, et al. Anti-monotonicity, bifurcation and multistability in the Vallis model for El Niño[J]. International Journal of Bifurcation and Chaos, 2019, 29(3): 1950032. doi: 10.1142/S0218127419500329
|