Citation: | LEI Yang, FENG Jianhu. Topology Optimization of Nonlinear Material Structures Based on Parameterized Level Set and Substructure Methods[J]. Applied Mathematics and Mechanics, 2021, 42(11): 1150-1160. doi: 10.21656/1000-0887.420090 |
[1] |
卫志军, 申利敏, 关晖, 等. 拓扑优化技术在抑制流体晃荡中的数值模拟研究[J]. 应用数学和力学, 2021, 42(1): 49-57. (WEI Zhijun, SHEN Limin, GUAN Hui, et al. Numerical simulation of topology optimization technique for tank sloshing suppression[J]. Applied Mathematics and Mechanics, 2021, 42(1): 49-57.(in Chinese)
|
[2] |
OSHER S. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49. doi: 10.1016/0021-9991(88)90002-2
|
[3] |
WANG S, WANG M Y. Radial basis functions and level set method for structural topology optimization[J]. International Journal for Numerical Methods in Engineering, 2010, 65(12): 2060-2090.
|
[4] |
WANG F, SIGMUND O, JENSEN J S. Design of materials with prescribed nonlinear properties[J]. Journal of the Mechanics and Physics of Solids, 2014, 69(2): 156-174.
|
[5] |
XIA L, FRITZEN F, BREITKOPF P. Evolutionary topology optimization of elastoplastic structures[J]. Structural & Multidiplinary Optimization, 2017, 55(2): 569-581.
|
[6] |
CHEN W, XIA L, YANG J, et al. Optimal microstructures of elastoplastic cellular materials under various macroscopic strains[J]. Mechanics of Materials, 2018, 118: 120-132. doi: 10.1016/j.mechmat.2017.10.002
|
[7] |
GUYAN R J. Reduction of stiffness and mass matrices[J]. AIAA Journal, 1965, 3(2): 380. doi: 10.2514/3.2874
|
[8] |
封建湖. 三维进气道系统流场的数值模拟研究[D]. 博士学位论文. 西安: 西北工业大学, 1995
FENG Jianhu. On numerical simulation of three-dimensional aircraft inlet systems[D]. PhD Thesis. Xi’an: Northwestern Polytechnical University, 1995. (in Chinese)
|
[9] |
MAHDIABADI M K, BARTL A, XU D, et al. An augmented free-interface-based modal substructuring for nonlinear structural dynamics including interface reduction[J]. Journal of Sound and Vibration, 2019, 462(8): 114915.
|
[10] |
ZHAO Y B, GUO W J, DUAN S H, et al. A novel substructure-based topology optimization method for the design of wing structure[J]. International Journal for Simulation & Multidisciplinary Design Optimization, 2017, 8: A5.
|
[11] |
WU Z, XIA L, WANG S, et al. Topology optimization of hierarchical lattice structures with substructuring[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 345: 602-617. doi: 10.1016/j.cma.2018.11.003
|
[12] |
FU J, XIA L, GAO L, et al. Topology optimization of periodic structures with substructuring[J]. Journal of Mechanical Design, 2019, 141(7): 071403. doi: 10.1115/1.4042616
|
[13] |
DIJK N P, MAUTE K, LANGELAAR M, et al. Level-set methods for structural topology optimization[J]. Structural and Multidisciplinary Optimization, 2013, 48(3): 437-472. doi: 10.1007/s00158-013-0912-y
|
[14] |
沈亚栋. 结构拓扑优化的参数化水平集方法研究[D]. 博士学位论文. 西安: 长安大学, 2019
SHEN Yadong. Research on parametric level set method for structural topology optimization[D]. PhD Thesis. Xi’an: Chang’an University, 2019. (in Chinese)
|
[15] |
王超逸, 封建湖. 拓扑优化中水平集方法的局限性及改进方法[J]. 建筑科学与工程学报, 2011, 28(2): 119-126. (WANG Chaoyi, FENG Jianhu. Weakness of level set method in topology optimization and it’s improvement[J]. Journal of Architecture and Civil Engineering, 2011, 28(2): 119-126.(in Chinese)
|
[16] |
WEI P, LI Z, LI X, et al. An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions[J]. Structural & Multidisciplinary Optimization, 2018, 58(2): 831-849.
|
[17] |
JUNG D, GEA H C. Topology optimization of nonlinear structures[J]. Finite Elements in Analysis & Design, 2004, 40(11): 1417-1427.
|
[18] |
JUNG D, GEA H C. Compliant mechanism design with non-linear materials using topology optimization[J]. International Journal of Mechanics and Materials in Design, 2004, 1(2): 157-171. doi: 10.1007/s10999-004-1494-z
|
[19] |
RAMOS A S, PAULINO G H. Filtering structures out of ground structures: a discrete filtering tool for structural design optimization[J]. Structural & Multidisciplinary Optimization, 2016, 54(1): 95-116.
|
[20] |
WANG M Y, WANG X, GUO D. A level set method for structural topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1): 227-246.
|
[21] |
ROCKAFELLAR R T. The multiplier method of Hestenes and Powell applied to convex programming[J]. Journal of Optimization Theory & Applications, 1973, 12(6): 555-562.
|
[22] |
裴世源, 徐华. 非均质复合材料力学性能的确定性多尺度计算方法[J]. 西安交通大学学报, 2015, 49(10): 8-13. (PEI Shiyuan, XU Hua. Deterministic multiscale method for heterogeneous composite material[J]. Journal of Xi’an Jiaotong University, 2015, 49(10): 8-13.(in Chinese) doi: 10.7652/xjtuxb201510002
|