Citation: | ZHAO Wei, REN Fengli. Finite Time Adaptive Synchronization of Quaternion-Value Neural Networks With Time Delays[J]. Applied Mathematics and Mechanics, 2022, 43(1): 94-103. doi: 10.21656/1000-0887.420068 |
This paper is concerned with the finite time synchronization of quaternion-value neural networks with time delays. Based on finite time control technique, the protocol of adaptive control is first proposed. Then by utilizing Lyapunov function method and inequalities skills, some sufficient conditions are derived to ensuring master systems and slave systems achieved synchronization in finite time, the settling time can also be theoretically given. Finally, the numerical simulation on quaternion-value neural networks with time delays is included to show the effectiveness of the theorem.
[1] |
HE W L, LUO T, TANG Y, et al. Secure communication based on quantized synchronization of chaotic neural networks under an event-triggered strategy[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(9): 1-12.
|
[2] |
LU W L, CHEN T P. QUAD-condition, synchronization, consensus of multiagents, and anti-synchronization of complex networks[J]. IEEE Transactions on Cybernetics, 2019, 99: 1-5.
|
[3] |
LU W L, CHEN T P. New approach to synchronization analysis of linearly coupled ordinary differential systems[J]. Physica D: Nonlinear Phenomena, 2006, 213(2): 214-230. doi: 10.1016/j.physd.2005.11.009
|
[4] |
YU W W, DELELLIS P, CHEN G R, et al. Distributed adaptive control of synchronization in complex networks[J]. IEEE Transactions on Automatic Control, 2012, 57(8): 2153-2158. doi: 10.1109/TAC.2012.2183190
|
[5] |
CHEN X F, SONG Q K, LI Z S, et al. Stability analysis of continuous-time and discrete-time quaternion-valued neural networks with linear threshold neurons[J]. IEEE Transactions on Neural Networks Learning Systems, 2017, 29(7): 2769-2781.
|
[6] |
CHEN X F, SONG Q K. State estimation for quaternion-valued neural networks with multiple time delays[J]. IEEE Transactions on Systems, Man, and Systems, 2019, 49(11): 2278-2287. doi: 10.1109/TSMC.2017.2776940
|
[7] |
WEI R Y, CAO J D. Fixed-time synchronization of quaternion-valued memristive neural networks with time delays[J]. Neural Networks, 2019, 113: 1-10. doi: 10.1016/j.neunet.2019.01.014
|
[8] |
LIU Y, ZHANG D D, LOU J G, et al. Stability analysis of quaternion-valued neural networks: decomposition and direct approaches[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29: 4201-4211. doi: 10.1109/TNNLS.2017.2755697
|
[9] |
LIU Y, ZHANG D D, LU J Q, et al. Global μ-stability criteria for quaternion-valued neural networks with unbounded time-varying delays[J]. Information Sciences, 2016, 360: 273-288. doi: 10.1016/j.ins.2016.04.033
|
[10] |
SONG Q K, CHEN X F. Multistability analysis of quaternion-valued neural networks with time delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(11): 5430-5540. doi: 10.1109/TNNLS.2018.2801297
|
[11] |
CORTÉS J. Finite-time convergent gradient flows with applications to network consensus[J]. Automatica, 2006, 42(11): 1993-2000. doi: 10.1016/j.automatica.2006.06.015
|
[12] |
POLYAKOV A, EFIMOV D, PERRUQUETTI W. Finite-time and fixed-time stabilization: implicit Lyapunov function approach[J]. Automatica, 2015, 51: 332-340. doi: 10.1016/j.automatica.2014.10.082
|
[13] |
LU W L, LIU X W, CHEN T P. A note on finite-time and fixed-time stability[J]. Neural Networks, 2016, 81: 11-15. doi: 10.1016/j.neunet.2016.04.011
|
[14] |
HUI Q, HADDAD W M, BHAT S P. Finite-time semistability, Filippov systems, and consensus protocols for nonlinear dynamical networks with switching topologies[J]. Nonlinear Analysis: Hybrid Systems, 2010, 4(3): 557-573. doi: 10.1016/j.nahs.2010.03.002
|
[15] |
WU L L, LIU K X, LÜ J H, et al. Finite-time adaptive stability of gene regulatory networks[J]. Neurocomputing, 2019, 338: 222-232. doi: 10.1016/j.neucom.2019.02.011
|
[16] |
TIAN B L, CUI J, LU H C, et al. Adaptive finite-time attitude tracking of quadrotors with experiments and comparisons[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9428-9438. doi: 10.1109/TIE.2019.2892698
|
[17] |
LIU X Y, HO D W C, SONG Q, et al. Finite/fixed-time pinning synchronization of complex networks with stochastic disturbances[J]. IEEE Transactions on Cybernetics, 2019, 49(6): 2398-2403. doi: 10.1109/TCYB.2018.2821119
|
[18] |
ZHAO Z L, JIANG Z P, LIU T F, et al. Global finite-time output-feedback stabilization of nonlinear systems under relaxed conditions[J]. IEEE Transactions on Automatic Control, 2021, 66(9): 4259-4266. doi: 10.1109/TAC.2020.3030857
|
[19] |
FILIPPOV A F. Differential Equations With Discontinuous Right-Hand Sides[M]. Dordrecht: Springer, 1988.
|
[20] |
HE J J, LIN Y Q, GE M F, et al. Adaptive finite-time cluster synchronization of neutral-type coupled neural networks with mixed delays[J]. Neurocomputing, 2020, 384: 11-20. doi: 10.1016/j.neucom.2019.11.046
|
[21] |
HARDY G, LITTLEWOOD J, POLYA G. Inequalities[M]. Cambridge: Cambridge University Press, 1952.
|