Citation: | LI Cong, HU Bin, NIU Zhongrong. Asymptotic Solutions of Plastic Stress and Displacement at V-Notch Tips Under Anti-Plane Shear[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1258-1275. doi: 10.21656/1000-0887.420045 |
An efficient method was developed to determine the first- and high-order terms of asymptotic solutions of plastic stress and displacement near V-notch tips under anti-plane shear in power-law hardening materials. Through introduction of the asymptotic series expansions of stress and displacement fields around the V-notch tip into the fundamental equations of the elastoplastic theory, the governing ordinary differential equations (ODEs) with the stress and displacement eigen-functions were established. Then the interpolating matrix method was employed to solve the resulting nonlinear and linear ODEs. Consequently, the high-order stress exponents and the associated eigen-solutions were obtained. The presented method, being capable of dealing with the V-notches with arbitrary opening angles and strain hardening indexes under anti-plane shear, has the advantages of great versatility and high accuracy. Typical examples were given to demonstrate the accuracy and effectiveness of this method.
[1] |
李聪, 牛忠荣, 胡宗军, 等. 求解双材料裂纹结构全域应力场的扩展边界元法[J]. 应用数学和力学, 2019, 40(8): 926-937. (LI Cong, NIU Zhongrong, HU Zongjun, et al. Computation of total stress fields for cracked bi-material structures with the extended boundary element method[J]. Applied Mathematics and Mechanics, 2019, 40(8): 926-937.(in Chinese)
|
[2] |
HUTCHINSON J W. Singular behavior at the end of a tensile crack in a hardening material[J]. Journal of the Mechanics and Physics of Solids, 1968, 16(1): 13-31. doi: 10.1016/0022-5096(68)90014-8
|
[3] |
RICE J R, ROSENGREN G F. Plane strain deformation near a crack tip in a power-law hardening material[J]. Journal of the Mechanics and Physics of Solids, 1968, 16(1): 1-12. doi: 10.1016/0022-5096(68)90013-6
|
[4] |
KUANG Z, XU X. Stress and strain fields at the tip of a sharp V-notch in a power-hardening material[J]. International Journal of Fracture, 1987, 35: 39-53. doi: 10.1007/BF00034533
|
[5] |
XIA L, WANG T C. Singular behaviour near the tip of a sharp V-notch in a power law hardening material[J]. International Journal of Fracture, 1993, 59(1): 83-93. doi: 10.1007/BF00032219
|
[6] |
LI Y C, WANG T C. High-order asymptotic field of tensile plane-strain nonlinear crack problems[J]. Scientia Sinica(Series A)
|
[7] |
SHARMA S M, ARAVAS N. On the development of variable-separable asymptotic elastoplastic solutions for interfacial cracks[J]. International Journal of Solids & Structures, 1993, 30(5): 695-723.
|
[8] |
XIA L, WANG T C, SHIH C F. Higher-order analysis of crack tip fields in elastic power-law hardening materials[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(4): 665-687. doi: 10.1016/0022-5096(93)90022-8
|
[9] |
YUAN F G, YANG S. Crack-tip fields in elastic-plastic material under plane stress mode Ⅰ loading[J]. International Journal of Fracture, 1997, 85(2): 131-155. doi: 10.1023/A:1007361116709
|
[10] |
YANG S, CHAO Y J, SUTTON M A. Higher order asymptotic crack tip fields in a power-law hardening material[J]. Engineering Fracture Mechanics, 1993, 45(1): 1-20. doi: 10.1016/0013-7944(93)90002-A
|
[11] |
CHAO Y J, YANG S. Higher order crack tip fields and its implication for fracture of solids under mode Ⅱ conditions[J]. Engineering Fracture Mechanics, 1996, 55(5): 777-794. doi: 10.1016/0013-7944(96)00054-9
|
[12] |
RICE J R. Stresses due to a sharp notch in a work-hardening elastic-plastic material loaded by longitudinal shear[J]. Journal of Applied Mechanics, 1967, 34(2): 287. doi: 10.1115/1.3607681
|
[13] |
AMAZIGO J C. Fully plastic crack in an infinite body under anti-plane shear[J]. International Journal of Solids and Structures, 1974, 10(9): 1003-1015. doi: 10.1016/0020-7683(74)90008-0
|
[14] |
YANG S, YUAN F G, CAI X. Higher orderasymptotic elastic-plastic crack-tip fields under antiplane shear[J]. Engineering Fracture Mechanics, 1996, 54(3): 405-422. doi: 10.1016/0013-7944(95)00191-3
|
[15] |
YANG S, YUAN F G, CHIANG M Y M. Analytical forms of higher-order asymptotic elastic-plastic crack-tip fields in a linear hardening material under antiplane shear[J]. International Journal of Fracture, 1996, 80(1): 59-71. doi: 10.1007/BF00036480
|
[16] |
YUAN F G, YANG S. Analytical solutions of fully plastic crack-tip higher order fields under antiplane shear[J]. International Journal of Fracture, 1994, 69(1): 1-26.
|
[17] |
WANG T J, KUANG Z B. Higher order asymptotic solutions of V-notch tip fields for damaged nonlinear materials under antiplane shear loading[J]. International Journal of Fracture, 1999, 96(4): 303-329. doi: 10.1023/A:1018657316810
|
[18] |
ZAPPALORTO M, LAZZARIN P. Analytical study of the elastic-plastic stress fields ahead of parabolic notches under antiplane shear loading[J]. International Journal of Fracture, 2007, 148(2): 139-154. doi: 10.1007/s10704-008-9185-7
|
[19] |
LAZZARIN P, ZAPPALORTO M. Plastic notch stress intensity factors for pointed V-notches under antiplane shear loading[J]. International Journal of Fracture, 2008, 152(1): 1-25. doi: 10.1007/s10704-008-9260-0
|
[20] |
ZAPPALORTO M, LAZZARIN P. A unified approach to the analysis of nonlinear stress and strain fields ahead of mode Ⅲ-loaded notches and cracks[J]. International Journal of Solids and Structures, 2010, 47(6): 851-864. doi: 10.1016/j.ijsolstr.2009.11.021
|
[21] |
ARAVAS N, BLAZO D H. Higher order terms in asymptotic elastoplastic mode Ⅲ crack tip solutions[J]. Acta Mechanica, 1991, 90(1/4): 139-153.
|
[22] |
LOGHIN A, ZHANG N, JOSEPH P F. A nonlinear finite element eigenanalysis of antiplane shear including higher order terms[J]. Engineering Fracture Mechanics, 2000, 66(5): 441-454. doi: 10.1016/S0013-7944(00)00031-X
|
[23] |
ZHANG N, JOSEPH P F. A nonlinear finite element eigenanalysis of singular stress fields in bimaterial wedges for plane strain[J]. International Journal of Fracture, 1998, 94(3): 299-319.
|
[24] |
LOGHIN A, JOSEPH P F. Asymptotic solutions for mixed mode loading of cracks and wedges in power law hardening materials[J]. Engineering Fracture Mechanics, 2001, 68(14): 1511-1534. doi: 10.1016/S0013-7944(01)00050-9
|
[25] |
PATWARDHAN P A, NALAVDE R A, KUJAWSKI D. An estimation of Ramberg-Osgood constants for materials with and without Loder’s strain using yield and ultimate strengths[J]. Procedia Structure Integrity, 2019, 17: 750-757. doi: 10.1016/j.prostr.2019.08.100
|
[26] |
NIU Z R, GE D L, CHENG C Z, et al. Evaluation of the stress singularities of plane V-notches in bonded dissimilar materials[J]. Applied Mathematical Modelling, 2009, 33(3): 1776-1792. doi: 10.1016/j.apm.2008.03.007
|