WANG Qishuai, ZHOU Bangzhao, LIU Xiaofeng, CAI Guoping. Motion Prediction of Free-Floating Space Non-Cooperative Targets[J]. Applied Mathematics and Mechanics, 2021, 42(11): 1103-1112. doi: 10.21656/1000-0887.420017
Citation: WANG Qishuai, ZHOU Bangzhao, LIU Xiaofeng, CAI Guoping. Motion Prediction of Free-Floating Space Non-Cooperative Targets[J]. Applied Mathematics and Mechanics, 2021, 42(11): 1103-1112. doi: 10.21656/1000-0887.420017

Motion Prediction of Free-Floating Space Non-Cooperative Targets

doi: 10.21656/1000-0887.420017
  • Received Date: 2021-01-18
  • Rev Recd Date: 2021-03-16
  • Available Online: 2021-12-07
  • Publish Date: 2021-11-30
  • Motion prediction of space non-cooperative target is an important issue for spacecraft on-orbit service. With obtained high-precision motion prediction results, the chaser can plan its motion trajectory to approach the target and then capture it. A motion prediction method was proposed for free-floating space non-cooperative targets. The core idea of this method is to identify kinematic parameters of the target’s mass center and attitude dynamic parameters, and then with dynamic equations for the target to realize the motion prediction. In the identification of the attitude dynamic parameters, inertia parameters of the target were preliminarily identified firstly, then an adaptive unscented Kalman filter (UKF) was used to roughly identify the attitude dynamic parameters, and finally the identification precision was further improved through optimization. In the identification of the kinematic parameters, the parameters were roughly identified firstly with the optimal attitude dynamic parameters obtained above and the kinematic equations for the target’s mass center, and then the identification precision was further improved again through optimization. In the end, the effectiveness of the proposed motion prediction method was verified by numerical simulations. Simulation results indicate that, the proposed method can achieve long-time high-precision motion prediction of the non-cooperative target whether the target is in uniaxial rotation or tumbling motion.
  • [1]
    FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68: 1-26. doi: 10.1016/j.paerosci.2014.03.002
    [2]
    OPROMOLLA R, FASANO G, RUFINO G, et al. A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations[J]. Progress in Aerospace Sciences, 2017, 93: 53-72. doi: 10.1016/j.paerosci.2017.07.001
    [3]
    徐方暖, 王博, 邓子辰, 等. 基于四元数方法的绳系机器人姿态控制[J]. 应用数学和力学, 2017, 38(12): 1309-1318. (XU Fangnuan, WANG Bo, DENG Zichen, et al. Attitude control of targets captured by tethered space robots based on the quaternion theory[J]. Applied Mathematics and Mechanics, 2017, 38(12): 1309-1318.(in Chinese)
    [4]
    王永芳, 於晓榛, 余航. 基于专利分析的自主在轨操作技术发展研究[J]. 飞行力学, 2019, 37(5): 12-17. (WANG Yongfang, YU Xiaozhen, YU Hang. Research on autonomous on-orbit operation technology development based on patent analysis[J]. Flight Dynamics, 2019, 37(5): 12-17.(in Chinese)
    [5]
    张治彬, 李新洪, 安继萍, 等. 一种地球静止轨道空间碎片主动清除方式[J]. 现代电子技术, 2018, 41(16): 88-91. (ZHANG Zhibin, LI Xinhong, AN Jiping, et al. An active removal method of space debris in geostationary orbit[J]. Modern Electronics Technique, 2018, 41(16): 88-91.(in Chinese)
    [6]
    BONNAL C, RUAULT J M, DESJEAN M C. Active debris removal: recent progress and current trends[J]. Acta Astronautica, 2013, 85: 51-60. doi: 10.1016/j.actaastro.2012.11.009
    [7]
    WOFFINDEN D C, GELLER D K. Navigating the road to autonomous orbital rendezvous[J]. Journal of Spacecraft and Rockets, 2007, 44(4): 898-909. doi: 10.2514/1.30734
    [8]
    SHARMA S, D’AMICO S. Pose estimation for non-cooperative rendezvous using neural networks[C]//AAS/AIAA Space Flight Mechanics Meeting. Maui County, Hawaii, USA, 2019.
    [9]
    STRUBE M, HENRY R, SKELETON E, et al. Raven: an on-orbit relative navigation demonstration using international space station visiting vehicles[C]//AAS GNC Conference. Breckenridge, CO, 2015.
    [10]
    HILLENBRAND U, LAMPARIELLO R. Motion and parameter estimation of a free-floating space object from range data for motion prediction[C]//8th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Munich, Germany, 2005.
    [11]
    AGHILI F, PARSA K. Motion and parameter estimation of space objects using laser-vision data[J]. Journal of Guidance Control and Dynamics, 2009, 32(2): 537-549.
    [12]
    LICHTER M D, DUBOWSKY S. Estimation of state, shape, and inertial parameters of space objects from sequences of range images[C]//Proceedings of SPIE: the International Society for Optical Engineering. 2003, 5267: 194-205.
    [13]
    LICHTER M D, DUBOWSKY S. State, shape, and parameter estimation of space objects from range images[C]//IEEE International Conference on Robotics and Automation. New Orleans, LA, 2004.
    [14]
    LICHTER M D. Shape, motion, and inertial parameter estimation of space objects using teams of cooperative vision sensors[D]. PhD Thesis. Cambridge: Massachusetts Institute of Technology, 2005.
    [15]
    TWEDDLE B E, SAENZ-OTERO A, LEONARD J J, et al. Factor graph modeling of rigid-body dynamic for localization, mapping, and parameter estimation of a spinning object in space[J]. Journal of Field Robotics, 2015, 32(6): 897-933. doi: 10.1002/rob.21548
    [16]
    YUAN J P, HOU X H, SUN C, et al. Fault-tolerant pose and inertial parameters estimation of an uncooperative spacecraft based on dual vector quaternions[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(4): 1250-1269. doi: 10.1177/0954410017751766
    [17]
    LI Y P, WANG Y P, XIE Y C. Using consecutive point clouds for pose and motion estimation of tumbling non-cooperative target[J]. Advances in Space Research, 2019, 63(5): 1576-1587. doi: 10.1016/j.asr.2018.11.024
    [18]
    MA C, DAI H H, YUAN J P. Estimation of inertial characteristics of tumbling spacecraft using constant state filter[J]. Advances in Space Research, 2017, 60(3): 513-530. doi: 10.1016/j.asr.2017.03.032
    [19]
    BENNINGHOFF H, BOGE T. Rendezvous involving a non-cooperative, tumbling target-estimation of moments of inertia and center of mass of an unknown target[C]//25th International Symposium on Space Flight Dynamic. München, Deutschland, 2015.
    [20]
    ZHOU B Z, CAI G P, LIU Y M, et al. Motion prediction of a non-cooperative space target[J]. Advances in Space Research, 2018, 61(1): 207-222. doi: 10.1016/j.asr.2017.10.028
    [21]
    WAN E A, VAN DER MERWE R. The Unscented Kalman Filter[M]. John Wiley & Sons Inc, 2001.
    [22]
    LAGARIAS J C, REEDS J A, WRIGHT M H, et al. Convergence properties of the Nelder-Mead simplex method in low dimensions[J]. SIAM Journal of Optimization, 1998, 9(1): 112-147. doi: 10.1137/S1052623496303470
  • Relative Articles

    [1]PAN Yaozong, ZHAO Yan. A Structural Dynamics Parameter Identification Method Based on the Modal Space Time-Domain Precise Integration[J]. Applied Mathematics and Mechanics, 2025, 46(1): 29-39. doi: 10.21656/1000-0887.450071
    [2]CAO Qi, FENG Min. Higher-Order KKT Sufficient Optimality Conditions for Nonsmooth Semi-Infinite Multiobjective Optimization[J]. Applied Mathematics and Mechanics, 2024, 45(4): 502-508. doi: 10.21656/1000-0887.440245
    [3]MENG Huanli, ZHANG Qiliang, WANG Jie. Algorithm Research Based on the PDE Sensitivity Filter[J]. Applied Mathematics and Mechanics, 2023, 44(1): 80-92. doi: 10.21656/1000-0887.430064
    [4]ZHAO Chunjie, GAO Ying, LIU Fuping. Equivalent Characterization of McRow Optimal Solutions to Multiobjective Optimization Problems[J]. Applied Mathematics and Mechanics, 2021, 42(6): 602-610. doi: 10.21656/1000-0887.410338
    [5]ZHAO Dan, SUN Xiangkai. Some Robust Approximate Optimality Conditions for Nonconvex Multi-Objective Optimization Problems[J]. Applied Mathematics and Mechanics, 2019, 40(6): 694-700. doi: 10.21656/1000-0887.390289
    [6]YANG Zhao, LAN Jun, WU Yongjun. On Solutions to Several Classes of Differential-Algebraic Equations Based on Artificial Neural Networks[J]. Applied Mathematics and Mechanics, 2019, 40(2): 115-126. doi: 10.21656/1000-0887.390122
    [7]YANG Yu-hong, LI Fei. Sufficient Optimality Conditions for Nonsmooth Semi-Infinite Multiobjective Optimization Problems[J]. Applied Mathematics and Mechanics, 2017, 38(5): 526-538. doi: 10.21656/1000-0887.380012
    [8]LI Xiao-yan, GAO Ying. Optimality Conditions for Proximal Proper Efficiency in Multiobjective Optimization Problems[J]. Applied Mathematics and Mechanics, 2015, 36(6): 668-676. doi: 10.3879/j.issn.1000-0887.2015.06.011
    [9]HE Yan-hui, TANG San-yi. Identification and Parameter Estimation for Classical SIR Model[J]. Applied Mathematics and Mechanics, 2013, 34(3): 252-258. doi: 10.3879/j.issn.1000-0887.2013.03.005
    [10]QIAN Qin-jian, SUN De-jun. Numerical Method for Optimum Motion of Undulatory Swimming Plate in Fluid Flow[J]. Applied Mathematics and Mechanics, 2011, 32(3): 324-332. doi: 10.3879/j.issn.1000-0887.2011.03.008
    [11]GE Xin-Sheng, CHEN Li-qun. Optimal Control of Nonholonomic Motion Planning for a Free-Falling Cat[J]. Applied Mathematics and Mechanics, 2007, 28(5): 539-545.
    [12]WANG Xin-feng, WANG Lian-ze. Preliminary Probe Into the Optimization on Propulsion in Short Distance Competitive Swimming[J]. Applied Mathematics and Mechanics, 2006, 27(1): 105-111.
    [13]YOU Yun-xiang, MIAO Guo-ping. Numerical Method for the Shape Reconstruction of a Hard Target[J]. Applied Mathematics and Mechanics, 2003, 24(10): 1090-1100.
    [14]WANG Li-li, ZHANG Jing-hui. Identification of Nonlinear Dynamic Systems:Time-Frequency Filtering and Skeleton Curves[J]. Applied Mathematics and Mechanics, 2001, 22(2): 182-190.
    [15]LI Jian-ping, TANG Yuan-yan, YAN Zhong-hong, ZHANG Wan-ping. Uniform Analytic Construction of Wavelet Analysis Filters Based on Sine and Cosine Trigonometric Functions[J]. Applied Mathematics and Mechanics, 2001, 22(5): 504-518.
    [16]DING Xie-ping. Noncompact Infinite of Optimization and Equilibria of Constrained Games in Generalized Convex Spaces[J]. Applied Mathematics and Mechanics, 2000, 21(9): 903-908.
    [17]Ma Junhai, Chen Yushu, Liu Zengrong. The Non-Linear Chaotic Model Reconstruction for the Exerimental Data Obtained From Different Dynamic System[J]. Applied Mathematics and Mechanics, 1999, 20(11): 1128-1134.
    [18]Wu Zhigang, Wang Benli, Ma Xingrui. Theory and Algorithm of Optimal Control Solution to Dynamic Systme Parameters Identification (Ⅱ) Stochastic System Parameters Identification and Application Example[J]. Applied Mathematics and Mechanics, 1999, 20(3): 229-234.
    [19]Wu Zhigang, Wang Benli, Ma Xingrui. Theory and Method of Optimal Control Solution to Dynamic System Parameters Identification(Ⅰ) Fundamental Concept and Deterministic System Parameters Identification[J]. Applied Mathematics and Mechanics, 1999, 20(2): 127-133.
    [20]Yang Xiag-xiang. A Study on Heat Transfer of the Optimization in Circular Fins of Parabolic Profile with Variable Thermal Parameters[J]. Applied Mathematics and Mechanics, 1988, 9(3): 241-252.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.1 %FULLTEXT: 25.1 %META: 67.8 %META: 67.8 %PDF: 7.1 %PDF: 7.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.0 %其他: 10.0 %China: 1.8 %China: 1.8 %Italy: 0.2 %Italy: 0.2 %Singapore: 0.2 %Singapore: 0.2 %United States: 0.5 %United States: 0.5 %[]: 0.3 %[]: 0.3 %上海: 1.7 %上海: 1.7 %东莞: 0.3 %东莞: 0.3 %临汾: 0.1 %临汾: 0.1 %北京: 4.0 %北京: 4.0 %华盛顿州: 0.1 %华盛顿州: 0.1 %南京: 1.0 %南京: 1.0 %南宁: 0.1 %南宁: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.2 %南通: 0.2 %台州: 0.1 %台州: 0.1 %合肥: 0.2 %合肥: 0.2 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.3 %哥伦布: 0.3 %大庆: 0.1 %大庆: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.2 %天津: 0.2 %太原: 0.3 %太原: 0.3 %安康: 0.2 %安康: 0.2 %宜昌: 0.2 %宜昌: 0.2 %宣城: 0.1 %宣城: 0.1 %平顶山: 0.2 %平顶山: 0.2 %广州: 1.3 %广州: 1.3 %廊坊: 0.1 %廊坊: 0.1 %张家口: 2.0 %张家口: 2.0 %成都: 1.6 %成都: 1.6 %扬州: 0.3 %扬州: 0.3 %新乡: 0.2 %新乡: 0.2 %新奥尔良: 0.1 %新奥尔良: 0.1 %昆明: 1.3 %昆明: 1.3 %晋中: 0.1 %晋中: 0.1 %杭州: 0.5 %杭州: 0.5 %柳州: 0.1 %柳州: 0.1 %格兰特县: 0.1 %格兰特县: 0.1 %榆林: 0.1 %榆林: 0.1 %武汉: 0.6 %武汉: 0.6 %毕节: 0.1 %毕节: 0.1 %沈阳: 0.2 %沈阳: 0.2 %洛杉矶: 0.2 %洛杉矶: 0.2 %海牙: 0.2 %海牙: 0.2 %深圳: 0.1 %深圳: 0.1 %湘潭: 0.2 %湘潭: 0.2 %漯河: 0.6 %漯河: 0.6 %烟台: 0.2 %烟台: 0.2 %石家庄: 0.9 %石家庄: 0.9 %福州: 0.2 %福州: 0.2 %纽约: 0.3 %纽约: 0.3 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 7.0 %芒廷维尤: 7.0 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.2 %苏州: 0.2 %衢州: 0.1 %衢州: 0.1 %西宁: 52.9 %西宁: 52.9 %西安: 0.6 %西安: 0.6 %贵阳: 0.2 %贵阳: 0.2 %达州: 0.1 %达州: 0.1 %运城: 0.9 %运城: 0.9 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.1 %郑州: 0.1 %重庆: 1.3 %重庆: 1.3 %长沙: 0.6 %长沙: 0.6 %长治: 0.2 %长治: 0.2 %阜新: 0.2 %阜新: 0.2 %青岛: 0.2 %青岛: 0.2 %鞍山: 0.5 %鞍山: 0.5 %黄冈: 0.2 %黄冈: 0.2 %龙岩: 0.2 %龙岩: 0.2 %其他ChinaItalySingaporeUnited States[]上海东莞临汾北京华盛顿州南京南宁南昌南通台州合肥哈尔滨哥伦布大庆大连天津太原安康宜昌宣城平顶山广州廊坊张家口成都扬州新乡新奥尔良昆明晋中杭州柳州格兰特县榆林武汉毕节沈阳洛杉矶海牙深圳湘潭漯河烟台石家庄福州纽约美国伊利诺斯芝加哥舟山芒廷维尤芝加哥苏州衢州西宁西安贵阳达州运城邯郸郑州重庆长沙长治阜新青岛鞍山黄冈龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (863) PDF downloads(89) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return