Volume 42 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
HU Yan, SUN Yuhuai. Solutions to Space-Time Fractional Complex Ginzburg-Landau Equations With the Complete Discrimination System for Polynomial Method[J]. Applied Mathematics and Mechanics, 2021, 42(8): 874-880. doi: 10.21656/1000-0887.410392
Citation: HU Yan, SUN Yuhuai. Solutions to Space-Time Fractional Complex Ginzburg-Landau Equations With the Complete Discrimination System for Polynomial Method[J]. Applied Mathematics and Mechanics, 2021, 42(8): 874-880. doi: 10.21656/1000-0887.410392

Solutions to Space-Time Fractional Complex Ginzburg-Landau Equations With the Complete Discrimination System for Polynomial Method

doi: 10.21656/1000-0887.410392
Funds:

The National Natural Science Foundation of China(12071323)

  • Received Date: 2020-12-24
  • Rev Recd Date: 2021-02-24
  • Available Online: 2021-08-14
  • The space-time fractional complex Ginzburg-Landau equation was studied. Firstly, the space-time fractional complex Ginzburg-Landau equation was transformed into the ordinary differential equation through the fractional complex transform. Secondly, the ordinary differential equation was reduced to an elementary integral form. Finally, a series of exact solutions including solitary wave solutions, rational function type solutions, triangle function type periodic solutions, and Jacobian elliptic function doubly-periodic solutions, were constructed with the complete discrimination system for polynomial method.
  • loading
  • [2]VONG S, LYU P. On numerical contour integral method for fractional diffusion equations with variable coefficients[J].Applied Mathematics Letters,2017,64: 137-142.
    EKICI M, MIRZAZADEH M, SONMEZOGLU A, et al. Dark and singular optical solitons with Kundu-Eckhaus equation by extended trial equation method and extended G′/G-expansion scheme[J].Optik,2016,127(22): 10490-10497.
    [3]SAHADEVAN R, PRAKASH P. Exact solutions and maximal dimension of invariant subspaces of time fractional coupled nonlinear partial differential equations[J].Communications in Nonlinear Science and Numerical Simulation,2017,42: 158-177.
    [4]ESLAMI M, REZAZADEH H, REZAZADEH M, et al. Exact solutions to the space-time fractional Schrdinger-Hirota equation and the space-time modified KDV-Zakharov-Kuznetsov equation[J].Optical & Quantum Electronics,2017,49(8): 279-293.
    [5]GUNER O, BEKIR A. Theexp-function method for solving nonlinear space-time fractional differential equations in mathematical physics[J].Journal of the Association of Arab Universities for Basic and Applied Sciences,2017,24: 277-282.
    [6]SHAMSELDEEN S. Approximate solution of space and time fractional higher order phase field equation[J].Physica,2018,494: 308-316.
    [7]HASSEINE A, BART H J. Adomian decomposition method solution of population balance equations for aggregation, nucleation, growth and breakup processes[J].Applied Mathematical Modelling,2015,39(7): 1975-1984.
    [8]张雪, 孙峪怀. (3+1)维时间分数阶KdV-Zakharov-Kuznetsov方程的分支分析及其行波解[J]. 应用数学和力学, 2019,40(12): 1345-1355.(ZHANG Xue, SUN Yuhuai. Dynamical analysis and solutions for (3+1)-dimensional time fractional KdV-Zakharov-Kuznetsov equations[J].Applied Mathematics and Mechanics,2019,40(12): 1345-1355.(in Chinese))
    [9]江林, 孙峪怀, 张雪, 等. (2+1)维时空分数阶Nizhnik-Novikov-Veslov方程的精确行波解及其分支[J]. 应用数学和力学, 2018, 39(11): 1313-1322.(JIANG Lin, SUN Yuhuai, ZHANG Xue, et al. Exact traveling wave solutions and bifurcations of (2+1)-dimensional space-time fractional-order Nizhnik-Novikov-Veslov equations[J].Applied Mathematics and Mechanics,2018, 39(11): 1313-1322.(in Chinese))
    [10]SAKAGUCHI H, MALOMED B A. Stable localized pulses and zigzag stripes in a two-dimensional diffractive-diffusive Ginzburg-Landau equation[J].Physica D,2001,159(1/2): 91-100.
    [11]SHI Y Q, DAI Z D, HAN S. Exact solutions for 2D cubic-quintic Ginzburg-Landau equation[J].Journal of Physics Conference,2008,96: 012148.
    [12]WAINBLAT G, MALOMED B A. Interactions between two-dimensional solitons in the diffractive-diffusive Ginzburg-Landau equation with the cubic-quintic nonlinearity[J].Physica D, 2009,238(14): 1143-1151.
    [13]施业琼. 2+1维Ginzburg-Landau方程的精确波解[J]. 数学的实践与认识, 2009,39(16): 247-251.(SHI Yeqiong. The exact wave solutions for 2+1 dimensional cubic-quintic Ginzburg-Landau equation[J].Mathematics in Practice and Theory,2009,39(16): 247-251.(in Chinese))
    [14]SHI Y Q, DAI Z D, LI D L. Application of exp-function method for 2D cubic-quintic Ginzburg-Landau equation[J].Applied Mathematics and Computation,2009,210(1): 269-275.
    [15]ZAYED E M E, ALURRFI K A E. On solving two higher-order nonlinear PDEs describing the propagation of optical pulses in optic fibers using the (G′/G,1/G)-expansion method[J].Ricerche di Matematica,2015,64(1): 167-194.
    [16]ZAYED E M E, ALURRFI K A E. Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrdinger-type equations[J].Applied Mathematics & Computation,2016,289: 111-131.
    [17]ZAYED E M E, AL-NOWEHY A G. Solitons and other exact solutions for a class of nonlinear Schrdinger-type equations[J].Optik,2017,130, 1295-1311.
    [18]SIRISUBTAWEE S, KOONPRASERT S, SUNGNUL S, et al. Exact traveling wave solutions of the space-time fractional complex Ginzburg-Landau equation and the space-time fractional Phi-4 equation using reliable methods[J].Advances in Difference Equations,2019,2019(1): 219. DOI: 10.1186/s13662-019-2154-9.
    [19]石兰芳, 王明灿, 钱正雅. 应用Riccati-Bernoulli辅助方程求解广义非线性Schrdinger方程和(2+1)维非线性Ginzburg-Landau方程[J]. 应用数学和力学, 2020,41(7): 786-795.(SHI Lanfang, WANG Mingcan, QIAN Zhengya. Solution of generalized nonlinear Schrdinger equations and (2+1)-dimensional nonlinear Ginzburg-Landau equations with a Riccati-Bernoulli auxiliary equation method[J].Applied Mathematics and Mechanics,2020,41(7): 786-795.(in Chinese))
    [20]LIU C S. Exact travelling wave solutions for (1+1)-dimensional dispersive long wave equation[J].Chinese Physics B,2005,14(9): 1710-1715.
    [21]LIU C S. Classification of all single travelling wave solutions to Calogero-Degasperis-Focas equation[J].Communications in Theoretical Physics,2007,48(10): 601-604.
    [22]LIU C S. The classification of travelling wave solutions and superposition of multi-solutions to Camassa-Holm equation with dispersion[J].Chinese Physics B,2007,16(7): 1832-1837.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1009) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return