Citation: | YU Bo, SUN Wenjian. Identification of Crack Tip Positions Based on the Scaled Boundary Finite Element Method and the Grey Wolf Optimization Algorithm[J]. Applied Mathematics and Mechanics, 2021, 42(11): 1177-1189. doi: 10.21656/1000-0887.410381 |
[1] |
史君林, 赵建平. 含三晶交多晶体沿晶断裂数值建模方法研究[J]. 机械强度, 2008, 40(4): 844-851. (SHI Junlin, ZHAO Jianping. Investigation on finite element modeling method of with triple junction polycrystalline intergranular fracture[J]. Journal of Mechanical Strength, 2008, 40(4): 844-851.(in Chinese)
|
[2] |
LING X, KEANINI R G, CHERUKUR H P. A non-iterative finite element method for inverse heat conduction problems[J]. International Journal for Numerical Methods in Engineering, 2003, 56(9): 1315-1334. doi: 10.1002/nme.614
|
[3] |
LIU J, SUN X S, HAN X, et al. A novel computational inverse technique for load identification using the shape function method of moving least square fitting[J]. Computers and Structures, 2014, 144: 127-137. doi: 10.1016/j.compstruc.2014.08.002
|
[4] |
余波, 吴月, 聂川宝, 等. 动载荷识别的非迭代法研究[J]. 应用数学和力学, 2019, 40(5): 473-489. (YU Bo, WU Yue, NIE Chuanbao, et al. A non-iterative method for dynamic load identification[J]. Applied Mathematics and Mechanics, 2019, 40(5): 473-489.(in Chinese)
|
[5] |
FLETCHER R, REEVES C M. Function minimization by conjugate gradients[J]. The Computer Journal, 1964, 7(2): 149-154. doi: 10.1093/comjnl/7.2.149
|
[6] |
YANG Y C. Solving the two-dimensional inverse heat source problem through the linear least squares error method[J]. International Journal of Heat & Mass Transfer, 1998, 41(2): 393-398.
|
[7] |
CUI M, ZHAO Y, XU B B, et al. Inverse analysis for simultaneously estimating multi-parameters of temperature-dependent thermal conductivities of an Inconel in a reusable metallic thermal protection system[J]. Applied Thermal Engineering, 2017, 125: 480-488. doi: 10.1016/j.applthermaleng.2017.06.113
|
[8] |
UDAYRAJ, MULANI K, TALUKDAR P, et al. Performance analysis and feasibility study of ant colony optimization, particle swarm optimization and cuckoo search algorithms for inverse heat transfer problems[J]. International Journal of Heat and Mass Transfer, 2015, 89: 359-378. doi: 10.1016/j.ijheatmasstransfer.2015.05.015
|
[9] |
BONABEAU E, DORIGO M, MARCO D R D F, et al. Swarm Intelligence: From Natural to Artificial Systems[M]. New York: Oxford University Press, 1999.
|
[10] |
KENNEDY J, EBERHART R C. Particle swarm optimization[C]// Proceedings of IEEE International Conference on Neural Networks. Piscataway, NJ, 1995.
|
[11] |
PANDA T R, SWAMY A K. An improved artificial bee colony algorithm for pavement resurfacing problem[J]. International Journal of Pavement Research and Technology, 2018, 11(5): 509-516. doi: 10.1016/j.ijprt.2018.04.001
|
[12] |
周焕林, 严俊, 余波, 等. 识别含热源瞬态热传导问题的热扩散系数[J]. 应用数学和力学, 2018, 39(2): 160-169. (ZHOU Huanlin, YAN Jun, YU Bo, et al. Identification of thermal diffusion coefficients for transient heat conduction problems with heat sources[J]. Applied Mathematics and Mechanics, 2018, 39(2): 160-169.(in Chinese)
|
[13] |
LIEU Q X, LEE J. Modeling and optimization of functionally graded plates under thermo-mechanical load using isogeometric analysis and adaptive hybrid evolutionary firefly algorithm[J]. Composite Structures, 2017, 179: 89-106. doi: 10.1016/j.compstruct.2017.07.016
|
[14] |
MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. doi: 10.1016/j.advengsoft.2013.12.007
|
[15] |
MIRJALILI S, SAREMI S, MIRJALILI S M, et al. Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization[J]. Expert Systems With Applications, 2016, 47: 106-119. doi: 10.1016/j.eswa.2015.10.039
|
[16] |
OZSOYDAN F B. Effects of dominant wolves in grey wolf optimization algorithm[J]. Applied Soft Computing, 2019, 83: 105658. doi: 10.1016/j.asoc.2019.105658
|
[17] |
NIU P, NIU S, LIU N, et al. The defect of the Grey wolf optimization algorithm and its verification method[J]. Knowledge-Based Systems, 2019, 171: 37-43. doi: 10.1016/j.knosys.2019.01.018
|
[18] |
GILBERT S. An analysis of the finite element method[J]. Mathematics of Computation, 1974, 41(1): 115-126.
|
[19] |
BREBBIA C A, TELLES J C F, WROBEL L C. Boundary Element Techniques: Theory and Applications in Engineering[M]. Berlin: Springer-Verlag, 1984.
|
[20] |
郭历伦, 陈忠富, 罗景润, 等. 扩展有限元方法及应用综述[J]. 力学季刊, 2011, 32(4): 612-625. (GUO Lilun, CHEN Zhongfu, LUO Jingrun, et al. A review of the extended finite element method and its applications[J]. Chinese Quarterly of Mechanics, 2011, 32(4): 612-625.(in Chinese)
|
[21] |
SONG C M. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation[M/OL]. Wiley Online Library, 2018(2018-06-29) [2021-05-06]. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119388487.
|
[22] |
SONG C M, WOLF J P. Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method[J]. Computers & Structures, 2002, 80(2): 183-197.
|
[23] |
SONG C M. Evaluation of power-logarithmic singularities, T-stresses and higher order terms of in-plane singular stress fields at cracks and multi-material corners[J]. Engineering Fracture Mechanics, 2005, 72(10): 1498-1530. doi: 10.1016/j.engfracmech.2004.11.002
|
[24] |
SONG C M. Analysis of singular stress fields at multi-material corners under thermal loading[J]. International Journal for Numerical Methods in Engineering, 2006, 65(5): 620-652. doi: 10.1002/nme.1456
|
[25] |
DEEKS A J, CHENG L. Potential flow around obstacles using the scaled boundary finite-element method[J]. International Journal for Numerical Methods in Fluids, 2003, 41(7): 721-741. doi: 10.1002/fld.468
|
[26] |
ANDREW J, DEEKS A J. Wave diffraction by vertical cylinder using the scaled boundary finite element method[C]//Proceeding CDROM of the Sixth World Congress on Computational Mechanics in Conjunction With the Second Asian Pacific Congress on Computational Mechanics. Beijing, China, 2004.
|
[27] |
TAO L B, SONG H, CHAKRABARTI S. Scaled boundary FEM solution of short-crested wave diffraction by a vertical cylinder[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 197(1/4): 232-242.
|
[28] |
SONG H, TAO L B, CHALRABARTI S. Modelling of water wave interaction with multiple cylinders of arbitrary shape[J]. Journal of Computational Physics, 2010, 229(5): 1498-1513. doi: 10.1016/j.jcp.2009.10.041
|
[29] |
殷德胜, 尹栓, 周宜红. 裂缝分析的比例边界有限元与有限元耦合的虚拟结构面模型[J]. 计算力学学报, 2014, 31(6): 735-741, 748. (YIN Desheng, YIN Shuan, ZHOU Yihong. Coupled SBFEM and FEM for crack analysis based on virtual discontinuous surface method[J]. Chinese Journal of Computational Mechanics, 2014, 31(6): 735-741, 748.(in Chinese) doi: 10.7511/jslx201406009
|
[30] |
YU B, HU P M, SAPUTRA A A, et al. The scaled boundary finite element method based on the hybrid quadtree mesh for solving transient heat conduction problems[J]. Applied Mathematical Modelling, 2021, 89(1): 541-571.
|
[31] |
WOLF J P, SONG C M. The scaled boundary finite-element method, a primer: derivations[J]. Computers and Structures, 2000, 78(1/3): 191-210.
|
[32] |
GDOUTOS E E. Fracture Mechanics: an Introduction[M]. Berlin: Springer, 2005.
|
[33] |
CHEN H L, YU B, ZHOU H L, et al. Identification of transient boundary conditions with improved cuckoo search algorithm and polynomial approximation[J]. Engineering Analysis With Boundary Elements, 2018, 95: 124-141. doi: 10.1016/j.enganabound.2018.07.006
|