Citation: | ZHANG Chaodong, ZHAO Xiang, RU Dongheng, WANG Peng, WU Hao, GAN Lei. On the Stress Prediction of Key Components in Steam Turbine Rotors Based on the NARX Neural Network[J]. Applied Mathematics and Mechanics, 2021, 42(8): 771-784. doi: 10.21656/1000-0887.410372 |
[2]甘磊, 吴昊, 仲政. 基于能量法的多轴疲劳寿命预测方法[J]. 固体力学学报, 2019,40(3): 260-268.(GAN Lei, WU Hao, ZHONG Zheng. Fatigue life prediction under multiaxial loading using energy-based models[J]. Chinese Journal of Solid Mechanics, 2019,40(3): 260-268.(in Chinese))
|
吕方明, 王坤, 黄树红, 等. 国产超临界汽轮机转子钢低周疲劳特性的试验研究[J].动力工程学报, 2013,33(8): 653-658.
(Lü Fangming, WANG Kun, HUANG Shuhong, et al. Experimental study on low-cycle fatigue properties of domestic supercritical turbine rotor steels[J]. Journal of Chinese Society of Power Engineering,2013,33(8): 653-658.(in Chinese))
|
[3]黄仙, 倪维斗. 汽轮机转子热应力的“复频法”建模研究[J]. 动力工程, 1995,15(6): 6-11.(HUANG Xian, NI Weidou. Thermal stress of steam turbine rotor based on complex frequency method[J]. Journal of Power Engineering,1995,15(6): 6-11.(in Chinese))
|
[4]黄仙, 倪维斗. 大型汽轮机转子动态热应力的数学模型[J]. 清华大学学报(自然科学版), 1996,36(10): 25-29.(HUANG Xian, NI Weidou. Study on dynamic thermal stresses in large-scale steam turbine rotors[J]. Journal of Tsinghua University (Science and Technology),1996,36(10): 25-29.(in Chinese))
|
[5]张恒良, 谢诞梅, 熊扬恒, 等. 600 MW汽轮机转子高精度热应力在线监测模型研制[J]. 中国电机工程学报, 2006,26(1): 21-25.(ZHANG Hengliang, XIE Danmei, XIONG Yangheng, et al. The research and development of high-quality thermal-stress online monitoring model for 600 MW turbine rotors[J]. Proceedings of the CSEE,2006,26(1): 21-25.(in Chinese))
|
[6]黄柳燕, 荆建平, 孟光. 采用平均温度计算汽轮机转子热应力的二维差分法[J]. 汽轮机技术, 2014,56(5): 332-334.(HUANG Liuyan, JING Jianping, MENG Guang. Two-dimensional difference method for thermal stress calculation of steam turbine rotor by using average temperature[J]. Turbine Technology,2014,56(5): 332-334.(in Chinese))
|
[7]BIAN S, LI W Y. Calculation of thermal stress and fatigue life of 1 000 MW steam turbine rotor[J]. Energy and Power Engineering,2013,5(4): 1484-1489.
|
[8]赵乃龙, 吴穹, 王炜哲, 等. 超超临界汽轮机高压转子低周疲劳及损伤分析[J]. 上海交通大学学报, 2015,49(5): 590-594.(ZHAO Nailong, WU Qiong, WANG Weizhe, et al. Numerical analysis of low-cycle fatigue and damage of a ultra-supercritical steam turbine high-pressure rotor[J]. Journal of Shanghai Jiao Tong University,2015,49(5): 590-594.(in Chinese))
|
[9]张炜, 胡玉峰. 基于有限元分析的汽轮机转子低周疲劳损耗研究[J]. 热能动力工程, 2018,33(9): 31-38.(ZHANG Wei, HU Yufeng. Study on low cycle fatigue loss of turbine rotor based on finite element analysis[J]. Journal of Engineering for Thermal Energy and Power,2018,33(9): 31-38.(in Chinese))
|
[10]SIMON H. Neural Networks: a Comprehensive Foundation[M]. New York: MacMillan College Publishing Company, 1994.
|
[11]BISHOP C M. Neural Networks for Pattern Recognition[M]. Oxford: Oxford University Press, 1995.
|
[12]HECHT-NIELSEN R. Theory of the backpropagation neural network[C]//IEEE International 1989 Joint Conference on Neural Networks. Washington DC, USA, 1989.
|
[13]DOMINICZAK K, RZADKOWSKI R, RADULAKI W, et al. Online prediction of temperature and stress in steam turbine components using neural networks[J]. Journal of Engineering for Gas Turbines & Power,2015,138(5): 052606.
|
[14]DOMINICZAK K, RZADKOWSKI R, RADULAKI W. Steam turbine stress control using NARX neural network[J]. Open Engineering,2015,5(1): 421-428.
|
[15]RZADKOWSKI R, DOMINICZAK K, RADULAKI W. Thermoelastic steam turbine rotor control based on neural network[J]. Journal of Physics Conference,2015,662: 012021.
|
[16]王鹏, 李潇潇, 李文福, 等. 汽轮机高温热部件寿命监测系统介绍[J]. 热力透平, 2019,48(4): 248-253.(WANG Peng, LI Xiaoxiao, LI Wenfu, et al. Life monitoring system for high temperature components in steam turbines[J]. Thermal Turbine,2019,48(4): 248-253.(in Chinese))
|
[17]黄来, 韩彦广, 焦庆丰. 600 MW超临界汽轮机启停过程热力耦合分析[J]. 汽轮机技术, 2011,53(1): 66-70.(HUANG Lai, HAN Yanguang, JIAO Qingfeng. The start and stop process coupled thermo-mechanical analysis of 600 MW supercritical steam turbine[J]. Turbine Technology,2011,53(1): 66-70.(in Chinese))
|
[18]BRILLIANT H M, TOLPADI A K. Analytical approach to steam turbine heat transfer in a combined cycle power plant[C]//ASME Turbo Expo: Power for Land, Sea & Air. Vienna, Austria, 2004,3: 401-409.
|
[19]ZHAO N L, WANG W Z, ZHANG J H, et al. Numerical investigation on life improvement of low-cycle fatigue for an ultra-supercritical steam turbine rotor[J]. Journal of Mechanical Science and Technology,2016,30: 1747-1754.
|
[20]KUBOTA M, KATAOKA S, KONDO Y. Effect of stress relief groove on fretting fatigue strength and index for the selection of optimal groove shape[J]. International Journal of Fatigue,2009,33(3): 439-446.
|
[21]施徐明. 转子三段圆弧结构应力释放槽的研究[J]. 热力透平, 2020,49(1): 58-62.(SHI Xuming. Study of stress relief groove with three arcs in rotor[J]. Thermal Turbine,2020,49(1): 58-62.(in Chinese))
|
[22]张雅美, 郝涛, 尹四倍, 等. 具有时延和随机扰动的未知C-G神经网络的有限时间函数投影同步及其在保密通信中的应用[J]. 应用数学和力学, 2020,41(12): 1405-1416.(ZHANG Yamei, HAO Tao, YIN Sibei, et al. Finite-time function projective synchronization of unknown Cohen-Grossberg neural networks with time delays and stochastic disturbances and its application in secure communication[J]. Applied Mathematics and Mechanics,2020,41(12): 1405-1416.(in Chinese))
|
[23]刘松, 彭勇, 邵毅明, 等. 基于门控递归单元神经网络的高速公路行程时间预测[J]. 应用数学和力学, 2019,40(11): 1289-1298.(LIU Song, PENG Yong, SHAO Yiming, et al. Expressway travel time prediction based on gated recurrent unit neural networks[J]. Applied Mathematics and Mechanics,2019,40(11): 1289-1298.(in Chinese))
|
[24]SIEGELMANN H T, HORNE B G, GILES C L. Computational capabilities of recurrent NARX neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics (Part B): Cybernetics,1997,27(2): 208-215.
|
[25]MENEZES JR J M P, BARRETO G A. Long-term time series prediction with the NARX network: an empirical evaluation[J]. Neurocomputing,2008,71(16/18): 3335-3343.
|
[26]NOWAK G, RUSIN A. Using the artificial neural network to control the steam turbine heating process[J]. Applied Thermal Engineering,2016,108: 204-210.
|
[27]LIN T, HORNE B G, TINO P, et al. Learning long-term dependencies in NARX recurrent neural networks[J]. IEEE Transactions on Neural Networks,1996,7(6): 1329-1338.
|
[28]方开泰. 均匀设计: 数论方法在试验设计的应用[J]. 应用数学学报, 1980,3(4): 363-372.(FANG Kaitai. The uniform design: application of number-theoretic methods in experimental design[J]. Acta Mathematica Sinica,1980,3(4): 363-372.(in Chinese))
|
[29]方开泰. 正交与均匀试验设计[M]. 北京: 科学出版社, 2001.(FANG Kaitai. Orthogonal and Uniform Test Design[M]. Beijing: Science Press, 2001.(in Chinese))
|
[30]HAGAN M T, MENHAJ M B. Training feedforward networks with the Marquardt algorithm[J]. IEEE Transactions on Neural Networks,1994,5(6): 989-993.
|