Citation: | YANG Jun. A Golden Ratio Algorithm for Solving Nonmonotone Variational Inequalities[J]. Applied Mathematics and Mechanics, 2021, 42(7): 764-770. doi: 10.21656/1000-0887.410359 |
[2]KORPELEVICH G M. The extragradient method for finding saddle points and other problem[J]. Ekonomika i Matematicheskie Metody,1976,12: 747-756.
|
FACHINEI F, PANG J S. Finite-Dimensional Variational Inequalities and Complementarity Problem[M]. New York: Springer-Verlag, 2003.
|
[3]ANTIPIN A S. On a method for convex programs using a symmetrical modification of the Lagrange function[J]. Ekonomika i Matematicheskie Metody,1976,12(6): 1164-1173.
|
[4]TSENG P. A modified forward-backward splitting method for maximal monotone mapping[J]. SIAM Journal on Control and Optimization,2000,38(2): 431-446.
|
[5]DUONG V T, DANG V H. Weak and strong convergence theorems for variational inequality problems[J]. Numerical Algorithms, 2018,78(4): 1045-1060.
|
[6]CENSOR Y, GIBALI A, REICH S. The subgradient extragradient method for solving variational inequalities in Hilbert space[J]. Journal of Optimization Theory and Application,2011,148: 318-335.
|
[7]YE M L, HE Y R. A double projection method for solving variational inequalities without monotonicity[J]. Computional Optimization and Application,2015,60: 141-150.
|
[8]SOLODOV M V, SVAITER B F. A new projection method for variational inequality problems[J]. SIAM Journal on Control and Optimization,1999,37(3): 765-776.
|
[9]HAN D R, LO H K. Two new self-adaptive projection methods for variational inequality problems[J]. Computers & Mathematics With Applications,2002,43(12): 1529-1537.
|
[10]HE B S. A class of projection and contraction methods for variational inequalities[J]. Applied Mathematics and Optimization, 1997,35: 69-76.
|
[11] DONG Q L, CHO Y J, ZHONG L, et al. Inertial projection and contraction algorithms for variational inequalities[J]. Journal of Global Optimization,2018,70(3): 687-704.
|
[12]NOOR M A. Some developments in general variational inequalities[J]. Applied Mathematics and Computation,2004,152(1): 199-277.
|
[13]韩继业, 修乃华, 戚厚铎. 非线性互补与理论算法[M]. 上海: 上海科学技术出版社, 2006.(HAN Jiye, XIU Naihua, QI Houduo. Nonlinear Complementary Theory and Algorithms[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2006.(in Chinese))
|
[14]MALITSKY Y. Golden ratio algorithms for variational inequalities[J]. Mathematical Programming,2020,184: 384-410.
|
[15]YANG J, LIU H W. A self-adaptive method for pseudomonotone equilibrium problems and variational inequalities[J]. Computional Optimization and Applications,2020,75: 423-440.
|
[16]LIU H W, YANG J. Weak convergence of iterative methods for solving quasimonotone variational inequalities[J]. Computational Optimization and Applications,2020,77(1): 491-508.
|
[17]YANG J, LIU H W. A modified projected gradient method for monotone variational inequalities[J]. Journal of Optimization Theory and Applications,2018,179(1): 197-211.
|