Volume 42 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
LEI Jun, SUO Hongmin, PENG Linyan, WU Deke, MENG Lu. Existence of Solutions for a Class of Kirchhoff Type Equations With SignChanging Potential[J]. Applied Mathematics and Mechanics, 2021, 42(8): 859-865. doi: 10.21656/1000-0887.410283
Citation: LEI Jun, SUO Hongmin, PENG Linyan, WU Deke, MENG Lu. Existence of Solutions for a Class of Kirchhoff Type Equations With SignChanging Potential[J]. Applied Mathematics and Mechanics, 2021, 42(8): 859-865. doi: 10.21656/1000-0887.410283

Existence of Solutions for a Class of Kirchhoff Type Equations With SignChanging Potential

doi: 10.21656/1000-0887.410283
Funds:

The National Natural Science Foundation of China(11661021;11861021)

  • Received Date: 2020-09-17
  • Rev Recd Date: 2021-03-12
  • Available Online: 2021-08-14
  • The Neumann boundary value problem about a class of Kirchhoff type equations with sign-changing potential terms was studied. By means of the variational method and the decomposition process for the underlying space, the energy functional was proved to satisfy the mountain pass geometry. Then, the energy functional (PS) sequence was proved to have a strongly convergent subsequence. Finally, the existence of two nontrivial solutions was obtained by Ekeland’s variational principle and the mountain pass lemma.
  • loading
  • [2]XIE W H, CHEN H B. Multiple positive solutions for the critical Kirchhoff type problems involving sign-changing weight functions[J]. Journal of Mathematical Analysis and Application,2019,479(1): 135-161.
    KIRCHHOFF G.Mechanik[M]. Leipzig: Teubner, 1883.
    [3]CAO X F, XU J X. Multiple solutions for Kirchhoff type problems involving super-linear and sub-linear terms[J].Electronic Journal of Qualitative Theory of Differential Equations,2015,16: 1-14.
    [4]SHEN L J, YAO X H. Multiple positive solutions for a class of Kirchhoff type problems involving general critical growth[R/OL]. 2016. (2016-07-07)[2021-03-12]. https://arxiv.org/pdf/1607.01923.pdf.
    [5]CHEN C Y, KUO Y C, WU T F. The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions[J].Journal of Differential Equations,2011,250(4): 1876-1908.
    [6]LIAO J F, LI H Y, ZHANG P. Existence and multiplicity of solutions for a nonlocal problem with critical Sobolev exponent[J].Computers & Mathematics With Applications, 2018,75(3): 787-797.
    [7]ZHANG J. The critical Neumann problem of Kirchhoff type[J].Applied Mathematics and Computation,2106,274(1): 519-530.
    [8]胡爱莲. Kirchhoff方程Neumann问题的无穷多解[J]. 重庆理工大学学报(自然科学版), 2019,33(9): 223-228.(HU Ailian. Infinitely many solutions for Neumann problem of Kirchhoff equation[J].Journal of Chongqing University of Technology(Natural Science),2019,33(9): 223-228.(in Chinese))
    [9]AN Y C, SUO H M. Existence of solutions for the Neumann boundary problem of Kirchhoff type equations[J].Journal of Spectral Theory,2018,9(2): 547-568.
    [10]郝娅楠, 黄永艳. 带有Neumann边界的Kirchhoff问题无穷多径向解的存在性[J]. 云南民族大学学报(自然科学版), 2018,27(3): 212-215.(HAO Yanan, HUANG Yongyan. Existence of infinitely many radial solutions to a Kirchhoff equation with Neumann boundary conditions[J].Journal of Yunnan University of Nationalities(Natural Sciences Edition),2018,27(3): 212-215.(in Chinese))
    [11]邵荣, 牛欣, 沈祖和. 非线性椭圆型边值问题解的存在性[J]. 应用数学和力学, 2003,24(1): 89-97.(SHAO Rong, NIU Xin, SHEN Zuhe. Existence of solutions for nonlinear elliptic boundary value problem[J].Applied Mathematics and Mechanics,2003,24(1): 89-97.(in Chinese))
    [12]CHABROWSKI J. The critical Neumann problem for semilinear elliptic equations with concave perturbations[J].Ricerche di Matematica,2007,56(2): 297-319.
    [13]BERESTYCKI H, CAPUZZO-DOLCETTA I, NIRENBERG L. Variational methods for indefinite superlinear homogeneous elliptic problems[J].NoDEA: Nonlinear Differential Equations and Applications,1995,2(4): 553-572.
    [14]EKELAND I. On the variational principle[J].Journal of Mathematical Analysis and Applications,1974,47(2): 324-353.
    [15]AMBROSETTI A, RABINOWITZ P H. Dual variational methods in critical point theory and applications[J].Journal of Functional Analysis,1973,14(4): 349-381.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (781) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return