Citation: | LEI Jun, SUO Hongmin, PENG Linyan, WU Deke, MENG Lu. Existence of Solutions for a Class of Kirchhoff Type Equations With SignChanging Potential[J]. Applied Mathematics and Mechanics, 2021, 42(8): 859-865. doi: 10.21656/1000-0887.410283 |
[2]XIE W H, CHEN H B. Multiple positive solutions for the critical Kirchhoff type problems involving sign-changing weight functions[J]. Journal of Mathematical Analysis and Application,2019,479(1): 135-161.
|
KIRCHHOFF G.Mechanik[M]. Leipzig: Teubner, 1883.
|
[3]CAO X F, XU J X. Multiple solutions for Kirchhoff type problems involving super-linear and sub-linear terms[J].Electronic Journal of Qualitative Theory of Differential Equations,2015,16: 1-14.
|
[4]SHEN L J, YAO X H. Multiple positive solutions for a class of Kirchhoff type problems involving general critical growth[R/OL]. 2016. (2016-07-07)[2021-03-12]. https://arxiv.org/pdf/1607.01923.pdf.
|
[5]CHEN C Y, KUO Y C, WU T F. The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions[J].Journal of Differential Equations,2011,250(4): 1876-1908.
|
[6]LIAO J F, LI H Y, ZHANG P. Existence and multiplicity of solutions for a nonlocal problem with critical Sobolev exponent[J].Computers & Mathematics With Applications, 2018,75(3): 787-797.
|
[7]ZHANG J. The critical Neumann problem of Kirchhoff type[J].Applied Mathematics and Computation,2106,274(1): 519-530.
|
[8]胡爱莲. Kirchhoff方程Neumann问题的无穷多解[J]. 重庆理工大学学报(自然科学版), 2019,33(9): 223-228.(HU Ailian. Infinitely many solutions for Neumann problem of Kirchhoff equation[J].Journal of Chongqing University of Technology(Natural Science),2019,33(9): 223-228.(in Chinese))
|
[9]AN Y C, SUO H M. Existence of solutions for the Neumann boundary problem of Kirchhoff type equations[J].Journal of Spectral Theory,2018,9(2): 547-568.
|
[10]郝娅楠, 黄永艳. 带有Neumann边界的Kirchhoff问题无穷多径向解的存在性[J]. 云南民族大学学报(自然科学版), 2018,27(3): 212-215.(HAO Yanan, HUANG Yongyan. Existence of infinitely many radial solutions to a Kirchhoff equation with Neumann boundary conditions[J].Journal of Yunnan University of Nationalities(Natural Sciences Edition),2018,27(3): 212-215.(in Chinese))
|
[11]邵荣, 牛欣, 沈祖和. 非线性椭圆型边值问题解的存在性[J]. 应用数学和力学, 2003,24(1): 89-97.(SHAO Rong, NIU Xin, SHEN Zuhe. Existence of solutions for nonlinear elliptic boundary value problem[J].Applied Mathematics and Mechanics,2003,24(1): 89-97.(in Chinese))
|
[12]CHABROWSKI J. The critical Neumann problem for semilinear elliptic equations with concave perturbations[J].Ricerche di Matematica,2007,56(2): 297-319.
|
[13]BERESTYCKI H, CAPUZZO-DOLCETTA I, NIRENBERG L. Variational methods for indefinite superlinear homogeneous elliptic problems[J].NoDEA: Nonlinear Differential Equations and Applications,1995,2(4): 553-572.
|
[14]EKELAND I. On the variational principle[J].Journal of Mathematical Analysis and Applications,1974,47(2): 324-353.
|
[15]AMBROSETTI A, RABINOWITZ P H. Dual variational methods in critical point theory and applications[J].Journal of Functional Analysis,1973,14(4): 349-381.
|