Volume 42 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
GONG Sheng, WU Chuijie. Large-Eddy Simulation of Supersonic Capsule-Rigid Disk-Gap-Band Parachute Systems[J]. Applied Mathematics and Mechanics, 2021, 42(3): 233-247. doi: 10.21656/1000-0887.410274
Citation: GONG Sheng, WU Chuijie. Large-Eddy Simulation of Supersonic Capsule-Rigid Disk-Gap-Band Parachute Systems[J]. Applied Mathematics and Mechanics, 2021, 42(3): 233-247. doi: 10.21656/1000-0887.410274

Large-Eddy Simulation of Supersonic Capsule-Rigid Disk-Gap-Band Parachute Systems

doi: 10.21656/1000-0887.410274
Funds:  The National Natural Science Foundation of China(11372068)
  • Received Date: 2020-09-14
  • Rev Recd Date: 2020-09-28
  • Publish Date: 2021-03-01
  • The influences of the aerodynamic deceleration performance and the flow field structure characteristics of the capsule-rigid disk-gap-band parachute system at an initial Mach number of 2.0 and different block-structured adaptive mesh refinement were studied. In the unsteady compressible fluid, the hybrid WENO (weighted essentially non-oscillatory) and TCD (tuned center difference) schemes were used to simulate the shock wave and the smooth continuous flow field. The large-eddy simulation method with the stretched vortex subgrid model was used to deal with the turbulence. The results show that, at a low resolution of the block-structured adaptive mesh refinement, it is difficult to accurately simulate the important aerodynamic drag coefficient and capture the flow field characteristics of the parachute system. Subsequently, the convergence of the adaptive mesh refinement of the flow field was verified.
  • loading
  • [1]
    O’FARRELL C, MUPPIDI S, BROCK J M. Development of models for disk-gap-band parachutes deployed supersonically in the wake of a slender body[C]//2017 IEEE Aerospace Conference.2017.
    [2]
    王利荣. 降落伞理论与应用[M]. 北京: 宇航工业出版社, 1997.(WANG Lirong. Parachute Theory and Application [M]. Beijing: Aerospace Industry Press, 1997.(in Chinese))
    [3]
    BAYLE O, LORENZONI L, BLANCQUAERT T, et al. Exomars entry descent and landing demonstrator mission and design overview[C]// European Space Agency.2015.
    [4]
    SENGUPTA A, WITKOWSKI A, ROWAN J, et al. An overview of the Mars science laboratory parachute decelerator system[C]// 〖STBX〗19th Aerodynamic Decelerator Systems Technology Conference and Seminar. Williamsburg, VA: AIAA, 2007.
    [5]
    PETERSON C W, STRICKLAND J H. The fluid dynamic of parachute inflation[J]. Annual Reviews Fluid Mechanics,1961,28(1): 361-387.
    [6]
    余莉, 李水生, 明晓. 降落伞弹性现象对伞衣载荷的影响[J]. 宇航学报, 2008,29(1): 381-385.(YU Li, LI Shuisheng, MING Xiao. Influence of the parachute elastic behavior on the canopy payload[J]. Journal of Astronautics,2008,29(1): 381-385.(in Chinese))
    [7]
    JIN Z Y, PASQUALINI S, QIN B. Experimental investigation of the effect of Reynolds number on flow structures in the wake of a circular parachute canopy[J]. Acta Mechanica Sinica,2014,30: 361-369.
    [8]
    JOHARI H, DESABRAIS K J. Vortex shedding in the near wake of a parachute canopy[J]. Journal of Fluid Mechanics,2005,〖STHZ〗 536: 185-207.
    [9]
    XUE X P, KOYAMA H, NAKAMURA Y. Numerical simulation on supersonic aerodynamic interference for rigid and flexible parachute[C]// AIAA Fluid Dynamics Conference and Exhibits.2013.
    [10]
    KARAGIOZIS K, KAMAKOTI R, CIRAK F, et al. A computational study of supersonic disk-gap-band parachutes using large-eddy simulation coupled to a structural membrane[J].Journal of Fluids and Structures,2011,〖STHZ〗 27(2): 175-192.
    [11]
    BARNHARDT M, DRAYNA T, NOMPELIS I, et al. Detached eddy simulations of the MSL parachute at supersonic conditions[C]// 〖STBX〗19th Aerodynamic Decelerator Systems Technology Conference and Seminar.Williamsburg, VA: AIAA, 2007.
    [12]
    BLAZEK J. Computational Fluid Dynamic Principles and Application [M]. USA: Elsevier, 2015.
    [13]
    阎超. 计算流体动力学方法与应用[M]. 北京: 北京航空航天大学出版社, 2006.(YAN Chao. Computational Fluid Dynamics Methods and Application [M]. Beijing: Beihang University Press, 2006.(in Chinese))
    [14]
    李涛, 随晶侠, 吴锤结. 超声速流场中6自由度物体运动的模拟研究[J]. 应用数学和力学, 2016,37(1): 33-53.(LI Tao, SUI Jingxia, WU Chuijie. Simulation of 6-DOF rigid bodies moving in supersonic flow[J]. Applied Mathematics and Mechanics,2016,37(1): 33-53.(in Chinese))
    [15]
    HILL D J, PANTANO C, PULLIN D I. Large-eddy simulation and multiscale modelling of a Richtmyer-Meshkov instability with reshock[J]. Journal of Fluid Mechanics,2006,〖STHZ〗 557: 29-61.
    [16]
    KOSOVIC B, PULLIN D I, SAMTANEY R. Subgrid-scale modelling for large-eddy simulations of compressible turbulence[J]. Physics of Fluids,2002,14(4): 1511-1522.
    [17]
    MISRA A, PULLIN D I. A vortex-based subgrid stress model for large-eddy simulation[J]. Physics of Fluids,1997,〖STHZ〗 9(8): 2443-2454.
    [18]
    LUNDGREN T S. Strained spiral vortex model for turbulence fine structure[J]. Physics of Fluids,1982,25(12): 2193-2203.
    [19]
    VOELKL T, PULLIN D I, CHAN D C. A physical-space version of the stretched-vortes subgrid-stress model for large-eddy simulation[J]. Physics of Fluids,2001,12(7): 1810-1825.
    [20]
    PULLIN D I. A vortex-based model for the subgrid flux of a passive scaler[J]. Physics of Fluids,2000,12(9): 2311-2319.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1602) PDF downloads(501) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return